sagawa commited on
Commit
6aff882
1 Parent(s): c7aecdc

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +15 -15
README.md CHANGED
@@ -35,12 +35,12 @@ We trained t5 on SMILES from ZINC using the task of masked-language modeling (ML
35
  ## Intended uses & limitations
36
 
37
  This model can be used for the prediction of molecules' properties, reactions, or interactions with proteins by changing the way of finetuning.
38
- As an example, We finetuned this model to predict products. Model is [here](https://huggingface.co/sagawa/ZINC-t5-productpredicition), and you can use the demo [here](https://huggingface.co/spaces/sagawa/predictproduct-t5).
39
  Using its encoder, we trained a regression model to predict a reaction yield. You can use this demo [here](https://huggingface.co/spaces/sagawa/predictyield-t5).
40
 
41
  ## Training and evaluation data
42
 
43
- We downloaded [ZINC data](https://drive.google.com/drive/folders/1lSPCqh31zxTVEhuiPde7W3rZG8kPgp-z) and canonicalized them using RDKit. Then, we droped duplicates. The total number of data is 22992522, and they were randomly split into train:validation=10:1.
44
 
45
  ## Training procedure
46
 
@@ -59,16 +59,16 @@ The following hyperparameters were used during training:
59
 
60
  | Training Loss | Step | Accuracy | Validation Loss |
61
  |:-------------:|:------:|:--------:|:---------------:|
62
- | 0.2226 | 25000 | 0.9843 | 0.2226 |
63
- | 0.1783 | 50000 | 0.9314 | 0.1783 |
64
- | 0.1619 | 75000 | 0.9371 | 0.1619 |
65
- | 0.1520 | 100000 | 0.9401 | 0.1520 |
66
- | 0.1449 | 125000 | 0.9422 | 0.1449 |
67
- | 0.1404 | 150000 | 0.9436 | 0.1404 |
68
- | 0.1368 | 175000 | 0.9447 | 0.1368 |
69
- | 0.1322 | 200000 | 0.9459 | 0.1322 |
70
- | 0.1299 | 225000 | 0.9466 | 0.1299 |
71
- | 0.1268 | 250000 | 0.9473 | 0.1268 |
72
- | 0.1244 | 275000 | 0.9483 | 0.1244 |
73
- | 0.1216 | 300000 | 0.9491 | 0.1216 |
74
- | 0.1204 | 325000 | 0.9497 | 0.1204 |
 
35
  ## Intended uses & limitations
36
 
37
  This model can be used for the prediction of molecules' properties, reactions, or interactions with proteins by changing the way of finetuning.
38
+ As an example, We finetuned this model to predict products. The model is [here](https://huggingface.co/sagawa/ZINC-t5-productpredicition), and you can use the demo [here](https://huggingface.co/spaces/sagawa/predictproduct-t5).
39
  Using its encoder, we trained a regression model to predict a reaction yield. You can use this demo [here](https://huggingface.co/spaces/sagawa/predictyield-t5).
40
 
41
  ## Training and evaluation data
42
 
43
+ We downloaded [ZINC data](https://drive.google.com/drive/folders/1lSPCqh31zxTVEhuiPde7W3rZG8kPgp-z) and canonicalized them using RDKit. Then, we dropped duplicates. The total number of data is 22992522, and they were randomly split into train:validation=10:1.
44
 
45
  ## Training procedure
46
 
 
59
 
60
  | Training Loss | Step | Accuracy | Validation Loss |
61
  |:-------------:|:------:|:--------:|:---------------:|
62
+ | 0.2471 | 25000 | 0.9843 | 0.2226 |
63
+ | 0.1871 | 50000 | 0.9314 | 0.1783 |
64
+ | 0.1791 | 75000 | 0.9371 | 0.1619 |
65
+ | 0.1596 | 100000 | 0.9401 | 0.1520 |
66
+ | 0.1522 | 125000 | 0.9422 | 0.1449 |
67
+ | 0.1435 | 150000 | 0.9436 | 0.1404 |
68
+ | 0.1421 | 175000 | 0.9447 | 0.1368 |
69
+ | 0.1398 | 200000 | 0.9459 | 0.1322 |
70
+ | 0.1297 | 225000 | 0.9466 | 0.1299 |
71
+ | 0.1324 | 250000 | 0.9473 | 0.1268 |
72
+ | 0.1257 | 275000 | 0.9483 | 0.1244 |
73
+ | 0.1266 | 300000 | 0.9491 | 0.1216 |
74
+ | 0.1301 | 325000 | 0.9497 | 0.1204 |