--- library_name: transformers language: - en license: cc-by-nc-sa-4.0 base_model: openai/whisper-large tags: - generated_from_trainer datasets: - sage-bergerson/ume_erj_processed metrics: - wer model-index: - name: Whisper Large UME-ERJ V2 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: UME-ERJ type: sage-bergerson/ume_erj_processed args: 'config: en, split: train' metrics: - name: Wer type: wer value: 0.049601737871107894 --- # Whisper Large UME-ERJ V2 This model is a fine-tuned version of [openai/whisper-large](https://huggingface.co/openai/whisper-large) on the UME-ERJ dataset. It achieves the following results on the evaluation set: - Loss: 0.0568 - Wer: 0.0496 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 0.7362 | 0.1143 | 200 | 0.1780 | 0.1274 | | 0.167 | 0.2286 | 400 | 0.1095 | 0.0852 | | 0.1248 | 0.3429 | 600 | 0.0959 | 0.0776 | | 0.0999 | 0.4571 | 800 | 0.0833 | 0.0669 | | 0.0919 | 0.5714 | 1000 | 0.0821 | 0.0703 | | 0.0839 | 0.6857 | 1200 | 0.0703 | 0.0623 | | 0.0749 | 0.8 | 1400 | 0.0686 | 0.0611 | | 0.0747 | 0.9143 | 1600 | 0.0689 | 0.0597 | | 0.0624 | 1.0286 | 1800 | 0.0646 | 0.0586 | | 0.0516 | 1.1429 | 2000 | 0.0638 | 0.0553 | | 0.0497 | 1.2571 | 2200 | 0.0593 | 0.0521 | | 0.0462 | 1.3714 | 2400 | 0.0634 | 0.0556 | | 0.0454 | 1.4857 | 2600 | 0.0588 | 0.0516 | | 0.0455 | 1.6 | 2800 | 0.0596 | 0.0540 | | 0.0432 | 1.7143 | 3000 | 0.0622 | 0.0526 | | 0.0401 | 1.8286 | 3200 | 0.0572 | 0.0524 | | 0.0437 | 1.9429 | 3400 | 0.0569 | 0.0529 | | 0.0344 | 2.0571 | 3600 | 0.0568 | 0.0496 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1