--- license: apache-2.0 library_name: sklearn tags: - tabular-classification - baseline-trainer --- ## Baseline Model trained on train5a1e8w7 to apply classification on label **Metrics of the best model:** accuracy 0.693101 recall_macro 0.665973 precision_macro 0.657625 f1_macro 0.656998 Name: LogisticRegression(C=0.1, class_weight='balanced', max_iter=1000), dtype: float64 **See model plot below:**
Pipeline(steps=[('easypreprocessor',EasyPreprocessor(types=      continuous  dirty_float  low_card_int  ...   date  free_string  useless
v_21       False        False         False  ...  False        False    False
v_32        True        False         False  ...  False        False    False
v_15       False        False         False  ...  False        False    False
v_4         True        False         False  ...  False        False    False
v_1        False        False         False  ...  False        False    False
v_8        False        False         False  ...  False        False    False
v_12       False        False         Fa...
v_34       False        False         False  ...  False        False    False
v_35        True        False         False  ...  False        False    False
v_36        True        False         False  ...  False        False    False
v_37        True        False         False  ...  False        False    False
v_38        True        False         False  ...  False        False    False
v_39        True        False         False  ...  False        False    False
v_40       False        False         False  ...  False        False    False[40 rows x 7 columns])),('logisticregression',LogisticRegression(C=0.1, class_weight='balanced',max_iter=1000))])
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
**Disclaimer:** This model is trained with dabl library as a baseline, for better results, use [AutoTrain](https://huggingface.co/autotrain). **Logs of training** including the models tried in the process can be found in logs.txt