boooom!
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/data +13 -13
- a2c-PandaReachDense-v2/policy.optimizer.pth +1 -1
- a2c-PandaReachDense-v2/policy.pth +1 -1
- config.json +1 -1
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -5.08 +/- 0.79
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:34ffd8144346c4cc924fb83a603bcbbc2d29c7c6e18f715345bd05f554b83fe7
|
3 |
+
size 107156
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -4,9 +4,9 @@
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the feature extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function MultiInputActorCriticPolicy.__init__ at
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
-
"_abc_impl": "<_abc._abc_data object at
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
@@ -41,11 +41,11 @@
|
|
41 |
"_np_random": null
|
42 |
},
|
43 |
"n_envs": 4,
|
44 |
-
"num_timesteps":
|
45 |
-
"_total_timesteps":
|
46 |
"seed": null,
|
47 |
"action_noise": null,
|
48 |
-
"start_time":
|
49 |
"learning_rate": 0.0007,
|
50 |
"tensorboard_log": null,
|
51 |
"lr_schedule": {
|
@@ -54,10 +54,10 @@
|
|
54 |
},
|
55 |
"_last_obs": {
|
56 |
":type:": "<class 'collections.OrderedDict'>",
|
57 |
-
":serialized:": "
|
58 |
-
"achieved_goal": "[[ 0.
|
59 |
-
"desired_goal": "[[
|
60 |
-
"observation": "[[ 0.
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -65,9 +65,9 @@
|
|
65 |
},
|
66 |
"_last_original_obs": {
|
67 |
":type:": "<class 'collections.OrderedDict'>",
|
68 |
-
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
69 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
70 |
-
"desired_goal": "[[ 0.
|
71 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
72 |
},
|
73 |
"_episode_num": 0,
|
@@ -76,13 +76,13 @@
|
|
76 |
"_current_progress_remaining": 0.0,
|
77 |
"ep_info_buffer": {
|
78 |
":type:": "<class 'collections.deque'>",
|
79 |
-
":serialized:": "
|
80 |
},
|
81 |
"ep_success_buffer": {
|
82 |
":type:": "<class 'collections.deque'>",
|
83 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
84 |
},
|
85 |
-
"_n_updates":
|
86 |
"n_steps": 5,
|
87 |
"gamma": 0.99,
|
88 |
"gae_lambda": 1.0,
|
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the feature extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x000001EB54C0B940>",
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x000001EB54C09B00>"
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
|
|
41 |
"_np_random": null
|
42 |
},
|
43 |
"n_envs": 4,
|
44 |
+
"num_timesteps": 1000000,
|
45 |
+
"_total_timesteps": 1000000,
|
46 |
"seed": null,
|
47 |
"action_noise": null,
|
48 |
+
"start_time": 1688884565.7926989,
|
49 |
"learning_rate": 0.0007,
|
50 |
"tensorboard_log": null,
|
51 |
"lr_schedule": {
|
|
|
54 |
},
|
55 |
"_last_obs": {
|
56 |
":type:": "<class 'collections.OrderedDict'>",
|
57 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAX9XWPlMcFDut8wg/X9XWPlMcFDut8wg/X9XWPlMcFDut8wg/X9XWPlMcFDut8wg/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAv/m8vxLV1j8LTYc/2Ad5PzSuUb/PfOG+96NxPxlUHL9ZgcS9tnazv6e7NT+7w24/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABf1dY+UxwUO63zCD/kmeE7fhfduudEZ7tf1dY+UxwUO63zCD/kmeE7fhfduudEZ7tf1dY+UxwUO63zCD/kmeE7fhfduudEZ7tf1dY+UxwUO63zCD/kmeE7fhfduudEZ7uUaA5LBEsGhpRoEnSUUpR1Lg==",
|
58 |
+
"achieved_goal": "[[0.41959664 0.00225999 0.5349682 ]\n [0.41959664 0.00225999 0.5349682 ]\n [0.41959664 0.00225999 0.5349682 ]\n [0.41959664 0.00225999 0.5349682 ]]",
|
59 |
+
"desired_goal": "[[-1.4763716 1.6783774 1.0570387 ]\n [ 0.97277594 -0.8190644 -0.44040534]\n [ 0.94390815 -0.6106582 -0.09594984]\n [-1.4020603 0.7098946 0.9326741 ]]",
|
60 |
+
"observation": "[[ 0.41959664 0.00225999 0.5349682 0.0068848 -0.0016868 -0.00352889]\n [ 0.41959664 0.00225999 0.5349682 0.0068848 -0.0016868 -0.00352889]\n [ 0.41959664 0.00225999 0.5349682 0.0068848 -0.0016868 -0.00352889]\n [ 0.41959664 0.00225999 0.5349682 0.0068848 -0.0016868 -0.00352889]]"
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
65 |
},
|
66 |
"_last_original_obs": {
|
67 |
":type:": "<class 'collections.OrderedDict'>",
|
68 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAARwvoPctpsj250R0+quUSvkZE3b096cs99sA+vR8ohj2C1tA9rJpmvYkDCT5CJ1g+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
69 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
70 |
+
"desired_goal": "[[ 0.11330276 0.08711585 0.15412034]\n [-0.14345422 -0.10804038 0.09956596]\n [-0.04657074 0.06550621 0.10197164]\n [-0.05629985 0.13380255 0.21108726]]",
|
71 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
72 |
},
|
73 |
"_episode_num": 0,
|
|
|
76 |
"_current_progress_remaining": 0.0,
|
77 |
"ep_info_buffer": {
|
78 |
":type:": "<class 'collections.deque'>",
|
79 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIMJ+sGK5uEMCUhpRSlIwBbJRLMowBdJRHQJ0B9GUfPop1fZQoaAZoCWgPQwgMAcCxZ68MwJSGlFKUaBVLMmgWR0CdAYMIu5BkdX2UKGgGaAloD0MIEOhM2lTNFMCUhpRSlGgVSzJoFkdAnQEPoaDPGHV9lChoBmgJaA9DCDfEeM2rOhHAlIaUUpRoFUsyaBZHQJ0Ao2CNCJJ1fZQoaAZoCWgPQwh7iEZ3EKsRwJSGlFKUaBVLMmgWR0CdA1gvUSZjdX2UKGgGaAloD0MIVFbT9URXDMCUhpRSlGgVSzJoFkdAnQLn2IwdsHV9lChoBmgJaA9DCO2cZoF2FxLAlIaUUpRoFUsyaBZHQJ0CdHEuQIV1fZQoaAZoCWgPQwi/DTFe86oNwJSGlFKUaBVLMmgWR0CdAgk2P1cudX2UKGgGaAloD0MIG4Uks3rHFcCUhpRSlGgVSzJoFkdAnQTB6Ww/xHV9lChoBmgJaA9DCHef46PFWQ3AlIaUUpRoFUsyaBZHQJ0EUJokAxV1fZQoaAZoCWgPQwhl/PuMCxcWwJSGlFKUaBVLMmgWR0CdA90yxiXqdX2UKGgGaAloD0MIpRR0e0njFMCUhpRSlGgVSzJoFkdAnQNw8W9DhXV9lChoBmgJaA9DCDP+fcaFow7AlIaUUpRoFUsyaBZHQJ0GLyauwHJ1fZQoaAZoCWgPQwg10eejjMgZwJSGlFKUaBVLMmgWR0CdBb7PppvhdX2UKGgGaAloD0MIlzyelh8YDcCUhpRSlGgVSzJoFkdAnQVLaIvalHV9lChoBmgJaA9DCMe44uKorBDAlIaUUpRoFUsyaBZHQJ0E4CzTnaF1fZQoaAZoCWgPQwjtSPWdX2QWwJSGlFKUaBVLMmgWR0CdB4RUWEbpdX2UKGgGaAloD0MIstXllIC4B8CUhpRSlGgVSzJoFkdAnQcS9/SYxHV9lChoBmgJaA9DCOI/3UCBtxLAlIaUUpRoFUsyaBZHQJ0Gn5CWu5l1fZQoaAZoCWgPQwjc8/xpo/oIwJSGlFKUaBVLMmgWR0CdBjNPgvUSdX2UKGgGaAloD0MIuTgqN1GLBMCUhpRSlGgVSzJoFkdAnQjRM36yjnV9lChoBmgJaA9DCDrObcK98hHAlIaUUpRoFUsyaBZHQJ0IYNz8xbl1fZQoaAZoCWgPQwgCRSxi2HEVwJSGlFKUaBVLMmgWR0CdB+11nuiOdX2UKGgGaAloD0MItABtq1kHBcCUhpRSlGgVSzJoFkdAnQeBNIsiCHV9lChoBmgJaA9DCNiBc0aUNhTAlIaUUpRoFUsyaBZHQJ0KRshxHXp1fZQoaAZoCWgPQwiT5Lm+D8cTwJSGlFKUaBVLMmgWR0CdCdVsDW9UdX2UKGgGaAloD0MIc0nVdhNsFcCUhpRSlGgVSzJoFkdAnQljCgsbvXV9lChoBmgJaA9DCKINwAZEyAvAlIaUUpRoFUsyaBZHQJ0I9cOby6N1fZQoaAZoCWgPQwjzyvW2mdoZwJSGlFKUaBVLMmgWR0CdC6WtU4rCdX2UKGgGaAloD0MI4fCCiNQ0BsCUhpRSlGgVSzJoFkdAnQs0UKzAvnV9lChoBmgJaA9DCHuDL0ymqgnAlIaUUpRoFUsyaBZHQJ0KwnPVurJ1fZQoaAZoCWgPQwj0qWOV0nMLwJSGlFKUaBVLMmgWR0CdClc45tFbdX2UKGgGaAloD0MI071O6suiE8CUhpRSlGgVSzJoFkdAnQ0KV+qioXV9lChoBmgJaA9DCM9oq5LIng3AlIaUUpRoFUsyaBZHQJ0MmgDifg91fZQoaAZoCWgPQwgtQrEVNA0QwJSGlFKUaBVLMmgWR0CdDCcer+5wdX2UKGgGaAloD0MI1LfM6bL4GMCUhpRSlGgVSzJoFkdAnQu75dnkDXV9lChoBmgJaA9DCGlyMQbWcRfAlIaUUpRoFUsyaBZHQJ0Oj3L3bmF1fZQoaAZoCWgPQwgEr5Y7M2ESwJSGlFKUaBVLMmgWR0CdDh4W1twadX2UKGgGaAloD0MI5ulcUUroDMCUhpRSlGgVSzJoFkdAnQ2qr3j+73V9lChoBmgJaA9DCMDLDBtlXQXAlIaUUpRoFUsyaBZHQJ0NPvPTodN1fZQoaAZoCWgPQwh+calKW/wIwJSGlFKUaBVLMmgWR0CdECErXlKcdX2UKGgGaAloD0MIuHaiJCSyFsCUhpRSlGgVSzJoFkdAnQ+wVGkN4XV9lChoBmgJaA9DCOCik6XW6xHAlIaUUpRoFUsyaBZHQJ0PPPD50r91fZQoaAZoCWgPQwgpdjQO9bsCwJSGlFKUaBVLMmgWR0CdDtG1QZXNdX2UKGgGaAloD0MIkQn4NZLUEcCUhpRSlGgVSzJoFkdAnRHAWi1zAHV9lChoBmgJaA9DCO8bX3tmuRLAlIaUUpRoFUsyaBZHQJ0RTv2GqPx1fZQoaAZoCWgPQwgzw0ZZv0kZwJSGlFKUaBVLMmgWR0CdENybx3FDdX2UKGgGaAloD0MIc2N6whJ/EsCUhpRSlGgVSzJoFkdAnRBwWvbGm3V9lChoBmgJaA9DCGH/dW7arAzAlIaUUpRoFUsyaBZHQJ0TNVPva111fZQoaAZoCWgPQwiAKJgxBSsMwJSGlFKUaBVLMmgWR0CdEsR8twrEdX2UKGgGaAloD0MIsAJ8t3mDDcCUhpRSlGgVSzJoFkdAnRJSHdoFmnV9lChoBmgJaA9DCC43GOqw0hDAlIaUUpRoFUsyaBZHQJ0R5d0JWvN1fZQoaAZoCWgPQwiZDTLJyBkPwJSGlFKUaBVLMmgWR0CdFJ1vVEuydX2UKGgGaAloD0MIjSrDuBvED8CUhpRSlGgVSzJoFkdAnRQslsxfwHV9lChoBmgJaA9DCDOK5ZZWcxDAlIaUUpRoFUsyaBZHQJ0TuS+xnnN1fZQoaAZoCWgPQwhksOJUa6EYwJSGlFKUaBVLMmgWR0CdE030PH1fdX2UKGgGaAloD0MIlFD6QsjZB8CUhpRSlGgVSzJoFkdAnRYddiUgS3V9lChoBmgJaA9DCFbw2xDjlQ/AlIaUUpRoFUsyaBZHQJ0VrR6Ww/x1fZQoaAZoCWgPQwiAgosVNWgVwJSGlFKUaBVLMmgWR0CdFTq814xDdX2UKGgGaAloD0MIXfksz4PbD8CUhpRSlGgVSzJoFkdAnRTO/1xsEnV9lChoBmgJaA9DCIeowp/h7QnAlIaUUpRoFUsyaBZHQJ0XeZXuE251fZQoaAZoCWgPQwio4zEDlSEUwJSGlFKUaBVLMmgWR0CdFwk/KQq7dX2UKGgGaAloD0MII9v5fmpcCcCUhpRSlGgVSzJoFkdAnRaW3Sa3JHV9lChoBmgJaA9DCHrhzoWRPgvAlIaUUpRoFUsyaBZHQJ0WKpwS8J51fZQoaAZoCWgPQwjtR4rIsIoHwJSGlFKUaBVLMmgWR0CdGOHR1HOKdX2UKGgGaAloD0MIK4arAyCuBcCUhpRSlGgVSzJoFkdAnRhwdXDFZXV9lChoBmgJaA9DCLQ9esN9RBHAlIaUUpRoFUsyaBZHQJ0X/hOxjax1fZQoaAZoCWgPQwiL3T6rzMQQwJSGlFKUaBVLMmgWR0CdF5JXQtz0dX2UKGgGaAloD0MIySHi5lRSCMCUhpRSlGgVSzJoFkdAnRo+2AoXsXV9lChoBmgJaA9DCD83NGWnjxPAlIaUUpRoFUsyaBZHQJ0ZzXumaYx1fZQoaAZoCWgPQwjyJOmayYcVwJSGlFKUaBVLMmgWR0CdGVqZc9nsdX2UKGgGaAloD0MIl3FTA83HGcCUhpRSlGgVSzJoFkdAnRjvX9R77nV9lChoBmgJaA9DCKsjRzoDYxDAlIaUUpRoFUsyaBZHQJ0bkT/Q0Gh1fZQoaAZoCWgPQwi5HK9A9CQRwJSGlFKUaBVLMmgWR0CdGx/jbSJCdX2UKGgGaAloD0MIuFz92CSfEsCUhpRSlGgVSzJoFkdAnRqs/6frbHV9lChoBmgJaA9DCLYSukvi/BHAlIaUUpRoFUsyaBZHQJ0aQcR15jZ1fZQoaAZoCWgPQwjue9Rfr9ALwJSGlFKUaBVLMmgWR0CdHN101ZTydX2UKGgGaAloD0MIppiDoKMVEsCUhpRSlGgVSzJoFkdAnRxsGHHmzXV9lChoBmgJaA9DCNLhIYyfZgXAlIaUUpRoFUsyaBZHQJ0b+bZvkzZ1fZQoaAZoCWgPQwj0GrtE9SYTwJSGlFKUaBVLMmgWR0CdG411nuiOdX2UKGgGaAloD0MIzxJkBFS4DMCUhpRSlGgVSzJoFkdAnR4hG2Cul3V9lChoBmgJaA9DCJ/nTxvVyRDAlIaUUpRoFUsyaBZHQJ0dsUvf0mN1fZQoaAZoCWgPQwiCABk6dnAJwJSGlFKUaBVLMmgWR0CdHT3kgfU4dX2UKGgGaAloD0MIqpog6j7gFsCUhpRSlGgVSzJoFkdAnRzSqIacZ3V9lChoBmgJaA9DCMx9chQgWhHAlIaUUpRoFUsyaBZHQJ0fdy8zyjJ1fZQoaAZoCWgPQwg0EMtmDkkUwJSGlFKUaBVLMmgWR0CdHwbYK6WgdX2UKGgGaAloD0MIED//PXjNE8CUhpRSlGgVSzJoFkdAnR6TcM3IdXV9lChoBmgJaA9DCFxzR//LNQXAlIaUUpRoFUsyaBZHQJ0eKDVYp2F1fZQoaAZoCWgPQwgebLHbZ2USwJSGlFKUaBVLMmgWR0CdIOvFFUhndX2UKGgGaAloD0MIrBkZ5C5SFcCUhpRSlGgVSzJoFkdAnSB7blA/s3V9lChoBmgJaA9DCDgyj/zBoBDAlIaUUpRoFUsyaBZHQJ0gCIwdsBR1fZQoaAZoCWgPQwh4gCctXBYSwJSGlFKUaBVLMmgWR0CdH5xN7BwddX2UKGgGaAloD0MIdm1vtySnC8CUhpRSlGgVSzJoFkdAnSJr3oLXtnV9lChoBmgJaA9DCOi7W1mi0w3AlIaUUpRoFUsyaBZHQJ0h+4e9zwN1fZQoaAZoCWgPQwjrq6sCtUgRwJSGlFKUaBVLMmgWR0CdIYggX/HYdX2UKGgGaAloD0MIFmh3SDEAFMCUhpRSlGgVSzJoFkdAnSEc5OrQxHV9lChoBmgJaA9DCDFAogkUsQTAlIaUUpRoFUsyaBZHQJ0jxGUfPop1fZQoaAZoCWgPQwhTPC6qRWQSwJSGlFKUaBVLMmgWR0CdI1QOWjXWdX2UKGgGaAloD0MIcalKW1yzEcCUhpRSlGgVSzJoFkdAnSLhK6FuenV9lChoBmgJaA9DCEi/fR04xxTAlIaUUpRoFUsyaBZHQJ0idOtW+491ZS4="
|
80 |
},
|
81 |
"ep_success_buffer": {
|
82 |
":type:": "<class 'collections.deque'>",
|
83 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
84 |
},
|
85 |
+
"_n_updates": 50000,
|
86 |
"n_steps": 5,
|
87 |
"gamma": 0.99,
|
88 |
"gae_lambda": 1.0,
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 44606
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1c42f3d38b6ef9469a1507193b65f9dea048ad7ee92702c571febd8409ea6d72
|
3 |
size 44606
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 45374
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:90d5669f9e26a0d2bcea0592655ee875729a8f33d9d8108f3514c46d75a35024
|
3 |
size 45374
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the feature extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x000002660679A940>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x000002660679B940>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVVwMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowFc2hhcGWUSwOFlIwDbG93lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlIwBQ5R0lFKUjARoaWdolGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpSMDWJvdW5kZWRfYmVsb3eUaB4olgMAAAAAAAAAAQEBlGgTjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwOFlGghdJRSlIwNYm91bmRlZF9hYm92ZZRoHiiWAwAAAAAAAAABAQGUaC1LA4WUaCF0lFKUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZSwOFlGgbaB4olgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGghdJRSlGgkaB4olgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGghdJRSlGgpaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlGgzaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlGg4TnVijAtvYnNlcnZhdGlvbpRoDSmBlH2UKGgQaBZoGUsGhZRoG2geKJYYAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwZRoFksGhZRoIXSUUpRoJGgeKJYYAAAAAAAAAAAAIEEAACBBAAAgQQAAIEEAACBBAAAgQZRoFksGhZRoIXSUUpRoKWgeKJYGAAAAAAAAAAEBAQEBAZRoLUsGhZRoIXSUUpRoM2geKJYGAAAAAAAAAAEBAQEBAZRoLUsGhZRoIXSUUpRoOE51YnVoGU5oEE5oOE51Yi4=", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcgEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBXNoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAgL8AAIC/AACAv5RoC0sDhZSMAUOUdJRSlIwEaGlnaJRoEyiWDAAAAAAAAAAAAIA/AACAPwAAgD+UaAtLA4WUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYDAAAAAAAAAAEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoFnSUUpSMDWJvdW5kZWRfYWJvdmWUaBMolgMAAAAAAAAAAQEBlGgiSwOFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000, "_total_timesteps": 1000, "seed": null, "action_noise": null, "start_time": 1688884529.7172375, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVmgIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGpDOlxjeWd3aW42NFxob21lXHptdXNjXGdpdF9yZXBvc1xoZi1kZWVwLXJsLXVuaXQ2XHZlbnZcbGliXHNpdGUtcGFja2FnZXNcc3RhYmxlX2Jhc2VsaW5lczNcY29tbW9uXHV0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgNdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP0bwBo24useFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA13QfP1uLJL1DKsc/13QfP1uLJL1DKsc/13QfP1uLJL1DKsc/13QfP1uLJL1DKsc/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAApF5zP0q8JT7mqKY/yu+Uv70FhL9pMeg9GWHev16KhL8nF5q/LieevoIN2z/LBqw/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADXdB8/W4skvUMqxz8fTZk953qgvOXu3D3XdB8/W4skvUMqxz8fTZk953qgvOXu3D3XdB8/W4skvUMqxz8fTZk953qgvOXu3D3XdB8/W4skvUMqxz8fTZk953qgvOXu3D2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.6228766 -0.04017196 1.5559772 ]\n [ 0.6228766 -0.04017196 1.5559772 ]\n [ 0.6228766 -0.04017196 1.5559772 ]\n [ 0.6228766 -0.04017196 1.5559772 ]]", "desired_goal": "[[ 0.95066285 0.16185108 1.3020294 ]\n [-1.1635678 -1.0314251 0.11337549]\n [-1.7373382 -1.0354726 -1.2038316 ]\n [-0.30889267 1.7113497 1.3439573 ]]", "observation": "[[ 0.6228766 -0.04017196 1.5559772 0.07485413 -0.01958985 0.10787753]\n [ 0.6228766 -0.04017196 1.5559772 0.07485413 -0.01958985 0.10787753]\n [ 0.6228766 -0.04017196 1.5559772 0.07485413 -0.01958985 0.10787753]\n [ 0.6228766 -0.04017196 1.5559772 0.07485413 -0.01958985 0.10787753]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA3FEkPT97Bz61648+vTCJPbd/YD1MYPA9IcG7Pf2mBb4PimM+NZW2PUduyL2K/1U+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.04011713 0.13230608 0.28109518]\n [ 0.06698749 0.0548093 0.11737117]\n [ 0.09167696 -0.13051982 0.22220634]\n [ 0.08915178 -0.09786659 0.20898262]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVnQMAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIIk+Srpk0LcCUhpRSlIwBbJRLMowBdJRHP+Zouf29L6F1fZQoaAZoCWgPQwg9mBQfn5gnwJSGlFKUaBVLMmgWRz/izX8O09hadX2UKGgGaAloD0MIO99PjZemKMCUhpRSlGgVSzJoFkc/3tbxEv0yxnV9lChoBmgJaA9DCEut9xvtoC3AlIaUUpRoFUsyaBZHP9gjcEeQuEp1fZQoaAZoCWgPQwipZ0Eo72sqwJSGlFKUaBVLMmgWRz/wzjin5zo2dX2UKGgGaAloD0MIrmTHRiDeKMCUhpRSlGgVSzJoFkc/7glhPTG5tnV9lChoBmgJaA9DCAGh9fBlQi3AlIaUUpRoFUsyaBZHP+qnWrfcesB1fZQoaAZoCWgPQwgnwRvSqGAjwJSGlFKUaBVLMmgWRz/nRXGOuJUHdX2UKGgGaAloD0MIcAuW6gJWIcCUhpRSlGgVSzJoFkc/9pkZrHlwLnV9lChoBmgJaA9DCF7VWS2wtx7AlIaUUpRoFUsyaBZHP/TPkq+ajN91fZQoaAZoCWgPQwiKdD+nIJ8iwJSGlFKUaBVLMmgWRz/zGnjyWiUQdX2UKGgGaAloD0MIV7JjIxC/H8CUhpRSlGgVSzJoFkc/8XGvOhTOxHV9lChoBmgJaA9DCA9j0t9LkSfAlIaUUpRoFUsyaBZHP/vM1TBInSh1fZQoaAZoCWgPQwi37uapDgkdwJSGlFKUaBVLMmgWRz/6A04zabnYdX2UKGgGaAloD0MIQde+gF7wJ8CUhpRSlGgVSzJoFkc/+E40dilSCXV9lChoBmgJaA9DCF9+p8mMXyvAlIaUUpRoFUsyaBZHP/ahVU+9rXV1fZQoaAZoCWgPQwjx9bUuNeohwJSGlFKUaBVLMmgWR0AAs1n/T9bYdX2UKGgGaAloD0MIJNHLKJa/MMCUhpRSlGgVSzJoFkc//50r9VFQVXV9lChoBmgJaA9DCGEcXDrmlCjAlIaUUpRoFUsyaBZHP/3oEjgQ6IZ1fZQoaAZoCWgPQwhZw0Xu6cojwJSGlFKUaBVLMmgWRz/8NxyXD3uedWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Windows-10-10.0.22621-SP0 10.0.22621", "Python": "3.9.13", "Stable-Baselines3": "1.3.0", "PyTorch": "2.0.1+cpu", "GPU Enabled": "False", "Numpy": "1.25.1", "Gym": "0.19.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the feature extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x000001EB54C0B940>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x000001EB54C09B00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVVwMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowFc2hhcGWUSwOFlIwDbG93lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlIwBQ5R0lFKUjARoaWdolGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpSMDWJvdW5kZWRfYmVsb3eUaB4olgMAAAAAAAAAAQEBlGgTjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwOFlGghdJRSlIwNYm91bmRlZF9hYm92ZZRoHiiWAwAAAAAAAAABAQGUaC1LA4WUaCF0lFKUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZSwOFlGgbaB4olgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGghdJRSlGgkaB4olgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGghdJRSlGgpaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlGgzaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlGg4TnVijAtvYnNlcnZhdGlvbpRoDSmBlH2UKGgQaBZoGUsGhZRoG2geKJYYAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwZRoFksGhZRoIXSUUpRoJGgeKJYYAAAAAAAAAAAAIEEAACBBAAAgQQAAIEEAACBBAAAgQZRoFksGhZRoIXSUUpRoKWgeKJYGAAAAAAAAAAEBAQEBAZRoLUsGhZRoIXSUUpRoM2geKJYGAAAAAAAAAAEBAQEBAZRoLUsGhZRoIXSUUpRoOE51YnVoGU5oEE5oOE51Yi4=", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcgEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBXNoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAgL8AAIC/AACAv5RoC0sDhZSMAUOUdJRSlIwEaGlnaJRoEyiWDAAAAAAAAAAAAIA/AACAPwAAgD+UaAtLA4WUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYDAAAAAAAAAAEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoFnSUUpSMDWJvdW5kZWRfYWJvdmWUaBMolgMAAAAAAAAAAQEBlGgiSwOFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "seed": null, "action_noise": null, "start_time": 1688884565.7926989, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVmgIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGpDOlxjeWd3aW42NFxob21lXHptdXNjXGdpdF9yZXBvc1xoZi1kZWVwLXJsLXVuaXQ2XHZlbnZcbGliXHNpdGUtcGFja2FnZXNcc3RhYmxlX2Jhc2VsaW5lczNcY29tbW9uXHV0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgNdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP0bwBo24useFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAX9XWPlMcFDut8wg/X9XWPlMcFDut8wg/X9XWPlMcFDut8wg/X9XWPlMcFDut8wg/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAv/m8vxLV1j8LTYc/2Ad5PzSuUb/PfOG+96NxPxlUHL9ZgcS9tnazv6e7NT+7w24/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABf1dY+UxwUO63zCD/kmeE7fhfduudEZ7tf1dY+UxwUO63zCD/kmeE7fhfduudEZ7tf1dY+UxwUO63zCD/kmeE7fhfduudEZ7tf1dY+UxwUO63zCD/kmeE7fhfduudEZ7uUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.41959664 0.00225999 0.5349682 ]\n [0.41959664 0.00225999 0.5349682 ]\n [0.41959664 0.00225999 0.5349682 ]\n [0.41959664 0.00225999 0.5349682 ]]", "desired_goal": "[[-1.4763716 1.6783774 1.0570387 ]\n [ 0.97277594 -0.8190644 -0.44040534]\n [ 0.94390815 -0.6106582 -0.09594984]\n [-1.4020603 0.7098946 0.9326741 ]]", "observation": "[[ 0.41959664 0.00225999 0.5349682 0.0068848 -0.0016868 -0.00352889]\n [ 0.41959664 0.00225999 0.5349682 0.0068848 -0.0016868 -0.00352889]\n [ 0.41959664 0.00225999 0.5349682 0.0068848 -0.0016868 -0.00352889]\n [ 0.41959664 0.00225999 0.5349682 0.0068848 -0.0016868 -0.00352889]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAARwvoPctpsj250R0+quUSvkZE3b096cs99sA+vR8ohj2C1tA9rJpmvYkDCT5CJ1g+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.11330276 0.08711585 0.15412034]\n [-0.14345422 -0.10804038 0.09956596]\n [-0.04657074 0.06550621 0.10197164]\n [-0.05629985 0.13380255 0.21108726]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIMJ+sGK5uEMCUhpRSlIwBbJRLMowBdJRHQJ0B9GUfPop1fZQoaAZoCWgPQwgMAcCxZ68MwJSGlFKUaBVLMmgWR0CdAYMIu5BkdX2UKGgGaAloD0MIEOhM2lTNFMCUhpRSlGgVSzJoFkdAnQEPoaDPGHV9lChoBmgJaA9DCDfEeM2rOhHAlIaUUpRoFUsyaBZHQJ0Ao2CNCJJ1fZQoaAZoCWgPQwh7iEZ3EKsRwJSGlFKUaBVLMmgWR0CdA1gvUSZjdX2UKGgGaAloD0MIVFbT9URXDMCUhpRSlGgVSzJoFkdAnQLn2IwdsHV9lChoBmgJaA9DCO2cZoF2FxLAlIaUUpRoFUsyaBZHQJ0CdHEuQIV1fZQoaAZoCWgPQwi/DTFe86oNwJSGlFKUaBVLMmgWR0CdAgk2P1cudX2UKGgGaAloD0MIG4Uks3rHFcCUhpRSlGgVSzJoFkdAnQTB6Ww/xHV9lChoBmgJaA9DCHef46PFWQ3AlIaUUpRoFUsyaBZHQJ0EUJokAxV1fZQoaAZoCWgPQwhl/PuMCxcWwJSGlFKUaBVLMmgWR0CdA90yxiXqdX2UKGgGaAloD0MIpRR0e0njFMCUhpRSlGgVSzJoFkdAnQNw8W9DhXV9lChoBmgJaA9DCDP+fcaFow7AlIaUUpRoFUsyaBZHQJ0GLyauwHJ1fZQoaAZoCWgPQwg10eejjMgZwJSGlFKUaBVLMmgWR0CdBb7PppvhdX2UKGgGaAloD0MIlzyelh8YDcCUhpRSlGgVSzJoFkdAnQVLaIvalHV9lChoBmgJaA9DCMe44uKorBDAlIaUUpRoFUsyaBZHQJ0E4CzTnaF1fZQoaAZoCWgPQwjtSPWdX2QWwJSGlFKUaBVLMmgWR0CdB4RUWEbpdX2UKGgGaAloD0MIstXllIC4B8CUhpRSlGgVSzJoFkdAnQcS9/SYxHV9lChoBmgJaA9DCOI/3UCBtxLAlIaUUpRoFUsyaBZHQJ0Gn5CWu5l1fZQoaAZoCWgPQwjc8/xpo/oIwJSGlFKUaBVLMmgWR0CdBjNPgvUSdX2UKGgGaAloD0MIuTgqN1GLBMCUhpRSlGgVSzJoFkdAnQjRM36yjnV9lChoBmgJaA9DCDrObcK98hHAlIaUUpRoFUsyaBZHQJ0IYNz8xbl1fZQoaAZoCWgPQwgCRSxi2HEVwJSGlFKUaBVLMmgWR0CdB+11nuiOdX2UKGgGaAloD0MItABtq1kHBcCUhpRSlGgVSzJoFkdAnQeBNIsiCHV9lChoBmgJaA9DCNiBc0aUNhTAlIaUUpRoFUsyaBZHQJ0KRshxHXp1fZQoaAZoCWgPQwiT5Lm+D8cTwJSGlFKUaBVLMmgWR0CdCdVsDW9UdX2UKGgGaAloD0MIc0nVdhNsFcCUhpRSlGgVSzJoFkdAnQljCgsbvXV9lChoBmgJaA9DCKINwAZEyAvAlIaUUpRoFUsyaBZHQJ0I9cOby6N1fZQoaAZoCWgPQwjzyvW2mdoZwJSGlFKUaBVLMmgWR0CdC6WtU4rCdX2UKGgGaAloD0MI4fCCiNQ0BsCUhpRSlGgVSzJoFkdAnQs0UKzAvnV9lChoBmgJaA9DCHuDL0ymqgnAlIaUUpRoFUsyaBZHQJ0KwnPVurJ1fZQoaAZoCWgPQwj0qWOV0nMLwJSGlFKUaBVLMmgWR0CdClc45tFbdX2UKGgGaAloD0MI071O6suiE8CUhpRSlGgVSzJoFkdAnQ0KV+qioXV9lChoBmgJaA9DCM9oq5LIng3AlIaUUpRoFUsyaBZHQJ0MmgDifg91fZQoaAZoCWgPQwgtQrEVNA0QwJSGlFKUaBVLMmgWR0CdDCcer+5wdX2UKGgGaAloD0MI1LfM6bL4GMCUhpRSlGgVSzJoFkdAnQu75dnkDXV9lChoBmgJaA9DCGlyMQbWcRfAlIaUUpRoFUsyaBZHQJ0Oj3L3bmF1fZQoaAZoCWgPQwgEr5Y7M2ESwJSGlFKUaBVLMmgWR0CdDh4W1twadX2UKGgGaAloD0MI5ulcUUroDMCUhpRSlGgVSzJoFkdAnQ2qr3j+73V9lChoBmgJaA9DCMDLDBtlXQXAlIaUUpRoFUsyaBZHQJ0NPvPTodN1fZQoaAZoCWgPQwh+calKW/wIwJSGlFKUaBVLMmgWR0CdECErXlKcdX2UKGgGaAloD0MIuHaiJCSyFsCUhpRSlGgVSzJoFkdAnQ+wVGkN4XV9lChoBmgJaA9DCOCik6XW6xHAlIaUUpRoFUsyaBZHQJ0PPPD50r91fZQoaAZoCWgPQwgpdjQO9bsCwJSGlFKUaBVLMmgWR0CdDtG1QZXNdX2UKGgGaAloD0MIkQn4NZLUEcCUhpRSlGgVSzJoFkdAnRHAWi1zAHV9lChoBmgJaA9DCO8bX3tmuRLAlIaUUpRoFUsyaBZHQJ0RTv2GqPx1fZQoaAZoCWgPQwgzw0ZZv0kZwJSGlFKUaBVLMmgWR0CdENybx3FDdX2UKGgGaAloD0MIc2N6whJ/EsCUhpRSlGgVSzJoFkdAnRBwWvbGm3V9lChoBmgJaA9DCGH/dW7arAzAlIaUUpRoFUsyaBZHQJ0TNVPva111fZQoaAZoCWgPQwiAKJgxBSsMwJSGlFKUaBVLMmgWR0CdEsR8twrEdX2UKGgGaAloD0MIsAJ8t3mDDcCUhpRSlGgVSzJoFkdAnRJSHdoFmnV9lChoBmgJaA9DCC43GOqw0hDAlIaUUpRoFUsyaBZHQJ0R5d0JWvN1fZQoaAZoCWgPQwiZDTLJyBkPwJSGlFKUaBVLMmgWR0CdFJ1vVEuydX2UKGgGaAloD0MIjSrDuBvED8CUhpRSlGgVSzJoFkdAnRQslsxfwHV9lChoBmgJaA9DCDOK5ZZWcxDAlIaUUpRoFUsyaBZHQJ0TuS+xnnN1fZQoaAZoCWgPQwhksOJUa6EYwJSGlFKUaBVLMmgWR0CdE030PH1fdX2UKGgGaAloD0MIlFD6QsjZB8CUhpRSlGgVSzJoFkdAnRYddiUgS3V9lChoBmgJaA9DCFbw2xDjlQ/AlIaUUpRoFUsyaBZHQJ0VrR6Ww/x1fZQoaAZoCWgPQwiAgosVNWgVwJSGlFKUaBVLMmgWR0CdFTq814xDdX2UKGgGaAloD0MIXfksz4PbD8CUhpRSlGgVSzJoFkdAnRTO/1xsEnV9lChoBmgJaA9DCIeowp/h7QnAlIaUUpRoFUsyaBZHQJ0XeZXuE251fZQoaAZoCWgPQwio4zEDlSEUwJSGlFKUaBVLMmgWR0CdFwk/KQq7dX2UKGgGaAloD0MII9v5fmpcCcCUhpRSlGgVSzJoFkdAnRaW3Sa3JHV9lChoBmgJaA9DCHrhzoWRPgvAlIaUUpRoFUsyaBZHQJ0WKpwS8J51fZQoaAZoCWgPQwjtR4rIsIoHwJSGlFKUaBVLMmgWR0CdGOHR1HOKdX2UKGgGaAloD0MIK4arAyCuBcCUhpRSlGgVSzJoFkdAnRhwdXDFZXV9lChoBmgJaA9DCLQ9esN9RBHAlIaUUpRoFUsyaBZHQJ0X/hOxjax1fZQoaAZoCWgPQwiL3T6rzMQQwJSGlFKUaBVLMmgWR0CdF5JXQtz0dX2UKGgGaAloD0MIySHi5lRSCMCUhpRSlGgVSzJoFkdAnRo+2AoXsXV9lChoBmgJaA9DCD83NGWnjxPAlIaUUpRoFUsyaBZHQJ0ZzXumaYx1fZQoaAZoCWgPQwjyJOmayYcVwJSGlFKUaBVLMmgWR0CdGVqZc9nsdX2UKGgGaAloD0MIl3FTA83HGcCUhpRSlGgVSzJoFkdAnRjvX9R77nV9lChoBmgJaA9DCKsjRzoDYxDAlIaUUpRoFUsyaBZHQJ0bkT/Q0Gh1fZQoaAZoCWgPQwi5HK9A9CQRwJSGlFKUaBVLMmgWR0CdGx/jbSJCdX2UKGgGaAloD0MIuFz92CSfEsCUhpRSlGgVSzJoFkdAnRqs/6frbHV9lChoBmgJaA9DCLYSukvi/BHAlIaUUpRoFUsyaBZHQJ0aQcR15jZ1fZQoaAZoCWgPQwjue9Rfr9ALwJSGlFKUaBVLMmgWR0CdHN101ZTydX2UKGgGaAloD0MIppiDoKMVEsCUhpRSlGgVSzJoFkdAnRxsGHHmzXV9lChoBmgJaA9DCNLhIYyfZgXAlIaUUpRoFUsyaBZHQJ0b+bZvkzZ1fZQoaAZoCWgPQwj0GrtE9SYTwJSGlFKUaBVLMmgWR0CdG411nuiOdX2UKGgGaAloD0MIzxJkBFS4DMCUhpRSlGgVSzJoFkdAnR4hG2Cul3V9lChoBmgJaA9DCJ/nTxvVyRDAlIaUUpRoFUsyaBZHQJ0dsUvf0mN1fZQoaAZoCWgPQwiCABk6dnAJwJSGlFKUaBVLMmgWR0CdHT3kgfU4dX2UKGgGaAloD0MIqpog6j7gFsCUhpRSlGgVSzJoFkdAnRzSqIacZ3V9lChoBmgJaA9DCMx9chQgWhHAlIaUUpRoFUsyaBZHQJ0fdy8zyjJ1fZQoaAZoCWgPQwg0EMtmDkkUwJSGlFKUaBVLMmgWR0CdHwbYK6WgdX2UKGgGaAloD0MIED//PXjNE8CUhpRSlGgVSzJoFkdAnR6TcM3IdXV9lChoBmgJaA9DCFxzR//LNQXAlIaUUpRoFUsyaBZHQJ0eKDVYp2F1fZQoaAZoCWgPQwgebLHbZ2USwJSGlFKUaBVLMmgWR0CdIOvFFUhndX2UKGgGaAloD0MIrBkZ5C5SFcCUhpRSlGgVSzJoFkdAnSB7blA/s3V9lChoBmgJaA9DCDgyj/zBoBDAlIaUUpRoFUsyaBZHQJ0gCIwdsBR1fZQoaAZoCWgPQwh4gCctXBYSwJSGlFKUaBVLMmgWR0CdH5xN7BwddX2UKGgGaAloD0MIdm1vtySnC8CUhpRSlGgVSzJoFkdAnSJr3oLXtnV9lChoBmgJaA9DCOi7W1mi0w3AlIaUUpRoFUsyaBZHQJ0h+4e9zwN1fZQoaAZoCWgPQwjrq6sCtUgRwJSGlFKUaBVLMmgWR0CdIYggX/HYdX2UKGgGaAloD0MIFmh3SDEAFMCUhpRSlGgVSzJoFkdAnSEc5OrQxHV9lChoBmgJaA9DCDFAogkUsQTAlIaUUpRoFUsyaBZHQJ0jxGUfPop1fZQoaAZoCWgPQwhTPC6qRWQSwJSGlFKUaBVLMmgWR0CdI1QOWjXWdX2UKGgGaAloD0MIcalKW1yzEcCUhpRSlGgVSzJoFkdAnSLhK6FuenV9lChoBmgJaA9DCEi/fR04xxTAlIaUUpRoFUsyaBZHQJ0idOtW+491ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Windows-10-10.0.22621-SP0 10.0.22621", "Python": "3.9.13", "Stable-Baselines3": "1.3.0", "PyTorch": "2.0.1+cpu", "GPU Enabled": "False", "Numpy": "1.25.1", "Gym": "0.19.0"}}
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -5.081437464244663, "std_reward": 0.7917243424066577, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-09T00:07:12.555637"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 3056
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aa54af69cc645015f9a79725a9ae75558c7f5e1a59d2307e299499257eaaabb6
|
3 |
size 3056
|