File size: 1,753 Bytes
8dff45f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
license: apache-2.0
base_model: google/mt5-base
tags:
- generated_from_trainer
model-index:
- name: wsdbanglat5_2e4_MT5
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wsdbanglat5_2e4_MT5

This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0064

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step  | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 0.0767        | 1.0   | 1481  | 0.0179          |
| 0.0151        | 2.0   | 2962  | 0.0096          |
| 0.011         | 3.0   | 4443  | 0.0077          |
| 0.0072        | 4.0   | 5924  | 0.0068          |
| 0.0051        | 5.0   | 7405  | 0.0057          |
| 0.0033        | 6.0   | 8886  | 0.0058          |
| 0.0037        | 7.0   | 10367 | 0.0057          |
| 0.0018        | 8.0   | 11848 | 0.0057          |
| 0.0014        | 9.0   | 13329 | 0.0065          |
| 0.0005        | 10.0  | 14810 | 0.0064          |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1