File size: 2,736 Bytes
31a22ad
 
 
 
 
4f44034
31a22ad
 
 
 
 
 
4f44034
31a22ad
 
 
4f44034
 
 
31a22ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f44034
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31a22ad
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
---
base_model: aubmindlab/bert-base-arabertv02
tags:
- generated_from_trainer
model-index:
- name: arabert_baseline_mechanics_task6_fold1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# arabert_baseline_mechanics_task6_fold1

This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7645
- Qwk: 0.6286
- Mse: 0.7645

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Qwk    | Mse    |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
| No log        | 0.5   | 2    | 1.8889          | 0.0476 | 1.8889 |
| No log        | 1.0   | 4    | 1.1278          | 0.4828 | 1.1278 |
| No log        | 1.5   | 6    | 1.1361          | 0.3077 | 1.1361 |
| No log        | 2.0   | 8    | 1.2627          | 0.1818 | 1.2627 |
| No log        | 2.5   | 10   | 1.5946          | 0.25   | 1.5946 |
| No log        | 3.0   | 12   | 1.0845          | 0.3429 | 1.0845 |
| No log        | 3.5   | 14   | 0.8934          | 0.3333 | 0.8934 |
| No log        | 4.0   | 16   | 0.9166          | 0.5333 | 0.9166 |
| No log        | 4.5   | 18   | 0.9074          | 0.5333 | 0.9074 |
| No log        | 5.0   | 20   | 0.8620          | 0.6061 | 0.8620 |
| No log        | 5.5   | 22   | 0.8171          | 0.5294 | 0.8171 |
| No log        | 6.0   | 24   | 0.7859          | 0.5294 | 0.7859 |
| No log        | 6.5   | 26   | 0.8244          | 0.6111 | 0.8244 |
| No log        | 7.0   | 28   | 0.8510          | 0.5946 | 0.8510 |
| No log        | 7.5   | 30   | 0.8300          | 0.5946 | 0.8300 |
| No log        | 8.0   | 32   | 0.7975          | 0.6286 | 0.7975 |
| No log        | 8.5   | 34   | 0.7763          | 0.6286 | 0.7763 |
| No log        | 9.0   | 36   | 0.7703          | 0.6286 | 0.7703 |
| No log        | 9.5   | 38   | 0.7657          | 0.6286 | 0.7657 |
| No log        | 10.0  | 40   | 0.7645          | 0.6286 | 0.7645 |


### Framework versions

- Transformers 4.44.0
- Pytorch 2.4.0
- Datasets 2.21.0
- Tokenizers 0.19.1