salbatarni
commited on
End of training
Browse files
README.md
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: aubmindlab/bert-base-arabertv02
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
model-index:
|
6 |
+
- name: arabert_baseline_relevance_task8_fold0
|
7 |
+
results: []
|
8 |
+
---
|
9 |
+
|
10 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
11 |
+
should probably proofread and complete it, then remove this comment. -->
|
12 |
+
|
13 |
+
# arabert_baseline_relevance_task8_fold0
|
14 |
+
|
15 |
+
This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset.
|
16 |
+
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 0.1603
|
18 |
+
- Qwk: 0.0
|
19 |
+
- Mse: 0.1603
|
20 |
+
|
21 |
+
## Model description
|
22 |
+
|
23 |
+
More information needed
|
24 |
+
|
25 |
+
## Intended uses & limitations
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Training and evaluation data
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training procedure
|
34 |
+
|
35 |
+
### Training hyperparameters
|
36 |
+
|
37 |
+
The following hyperparameters were used during training:
|
38 |
+
- learning_rate: 2e-05
|
39 |
+
- train_batch_size: 16
|
40 |
+
- eval_batch_size: 16
|
41 |
+
- seed: 42
|
42 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
43 |
+
- lr_scheduler_type: linear
|
44 |
+
- num_epochs: 10
|
45 |
+
|
46 |
+
### Training results
|
47 |
+
|
48 |
+
| Training Loss | Epoch | Step | Validation Loss | Qwk | Mse |
|
49 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
|
50 |
+
| No log | 0.5 | 2 | 0.8396 | 0.0628 | 0.8396 |
|
51 |
+
| No log | 1.0 | 4 | 0.0941 | 0.0870 | 0.0941 |
|
52 |
+
| No log | 1.5 | 6 | 0.1025 | 0.0 | 0.1025 |
|
53 |
+
| No log | 2.0 | 8 | 0.1788 | 0.0 | 0.1788 |
|
54 |
+
| No log | 2.5 | 10 | 0.2166 | 0.1158 | 0.2166 |
|
55 |
+
| No log | 3.0 | 12 | 0.3700 | 0.2013 | 0.3700 |
|
56 |
+
| No log | 3.5 | 14 | 0.3262 | 0.2519 | 0.3262 |
|
57 |
+
| No log | 4.0 | 16 | 0.1386 | 0.2519 | 0.1386 |
|
58 |
+
| No log | 4.5 | 18 | 0.1148 | 0.0 | 0.1148 |
|
59 |
+
| No log | 5.0 | 20 | 0.1624 | 0.0 | 0.1624 |
|
60 |
+
| No log | 5.5 | 22 | 0.1332 | 0.0 | 0.1332 |
|
61 |
+
| No log | 6.0 | 24 | 0.1031 | 0.0411 | 0.1031 |
|
62 |
+
| No log | 6.5 | 26 | 0.1199 | 0.0 | 0.1199 |
|
63 |
+
| No log | 7.0 | 28 | 0.1398 | 0.0 | 0.1398 |
|
64 |
+
| No log | 7.5 | 30 | 0.1573 | 0.0 | 0.1573 |
|
65 |
+
| No log | 8.0 | 32 | 0.1592 | 0.1158 | 0.1592 |
|
66 |
+
| No log | 8.5 | 34 | 0.1587 | 0.1158 | 0.1587 |
|
67 |
+
| No log | 9.0 | 36 | 0.1588 | 0.0 | 0.1588 |
|
68 |
+
| No log | 9.5 | 38 | 0.1591 | 0.0 | 0.1591 |
|
69 |
+
| No log | 10.0 | 40 | 0.1603 | 0.0 | 0.1603 |
|
70 |
+
|
71 |
+
|
72 |
+
### Framework versions
|
73 |
+
|
74 |
+
- Transformers 4.44.0
|
75 |
+
- Pytorch 2.4.0
|
76 |
+
- Datasets 2.21.0
|
77 |
+
- Tokenizers 0.19.1
|