--- base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: arabert_baseline_vocabulary_task8_fold0 results: [] --- # arabert_baseline_vocabulary_task8_fold0 This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3519 - Qwk: 0.7059 - Mse: 0.3519 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | No log | 0.5 | 2 | 2.4116 | 0.0 | 2.4116 | | No log | 1.0 | 4 | 1.3953 | 0.1860 | 1.3953 | | No log | 1.5 | 6 | 0.6553 | 0.5772 | 0.6553 | | No log | 2.0 | 8 | 0.5969 | 0.5977 | 0.5969 | | No log | 2.5 | 10 | 0.4486 | 0.7059 | 0.4486 | | No log | 3.0 | 12 | 0.2418 | 0.8011 | 0.2418 | | No log | 3.5 | 14 | 0.3669 | 0.7059 | 0.3669 | | No log | 4.0 | 16 | 0.7921 | 0.5459 | 0.7921 | | No log | 4.5 | 18 | 0.5441 | 0.6277 | 0.5441 | | No log | 5.0 | 20 | 0.3384 | 0.7168 | 0.3384 | | No log | 5.5 | 22 | 0.3399 | 0.7572 | 0.3399 | | No log | 6.0 | 24 | 0.3927 | 0.6939 | 0.3927 | | No log | 6.5 | 26 | 0.5647 | 0.6277 | 0.5647 | | No log | 7.0 | 28 | 0.5237 | 0.6356 | 0.5237 | | No log | 7.5 | 30 | 0.3655 | 0.7794 | 0.3655 | | No log | 8.0 | 32 | 0.2983 | 0.7794 | 0.2983 | | No log | 8.5 | 34 | 0.3016 | 0.7794 | 0.3016 | | No log | 9.0 | 36 | 0.3254 | 0.7794 | 0.3254 | | No log | 9.5 | 38 | 0.3414 | 0.7667 | 0.3414 | | No log | 10.0 | 40 | 0.3519 | 0.7059 | 0.3519 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1