--- base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: arabert_cross_relevance_task1_fold2 results: [] --- # arabert_cross_relevance_task1_fold2 This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2831 - Qwk: 0.0 - Mse: 0.2831 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | |:-------------:|:------:|:----:|:---------------:|:-------:|:------:| | No log | 0.0308 | 2 | 1.7758 | 0.0 | 1.7758 | | No log | 0.0615 | 4 | 0.4260 | 0.0230 | 0.4260 | | No log | 0.0923 | 6 | 0.2683 | 0.0357 | 0.2683 | | No log | 0.1231 | 8 | 0.4228 | 0.1279 | 0.4228 | | No log | 0.1538 | 10 | 0.3603 | -0.0238 | 0.3603 | | No log | 0.1846 | 12 | 0.2737 | 0.0 | 0.2737 | | No log | 0.2154 | 14 | 0.2624 | 0.0 | 0.2624 | | No log | 0.2462 | 16 | 0.2619 | 0.0 | 0.2619 | | No log | 0.2769 | 18 | 0.2688 | 0.0 | 0.2688 | | No log | 0.3077 | 20 | 0.2704 | 0.0 | 0.2704 | | No log | 0.3385 | 22 | 0.2624 | 0.0 | 0.2624 | | No log | 0.3692 | 24 | 0.2623 | 0.0 | 0.2623 | | No log | 0.4 | 26 | 0.2679 | 0.0 | 0.2679 | | No log | 0.4308 | 28 | 0.2721 | 0.0 | 0.2721 | | No log | 0.4615 | 30 | 0.2703 | 0.0 | 0.2703 | | No log | 0.4923 | 32 | 0.2734 | 0.0 | 0.2734 | | No log | 0.5231 | 34 | 0.2751 | 0.0 | 0.2751 | | No log | 0.5538 | 36 | 0.2768 | 0.0 | 0.2768 | | No log | 0.5846 | 38 | 0.2791 | 0.0 | 0.2791 | | No log | 0.6154 | 40 | 0.2794 | 0.0 | 0.2794 | | No log | 0.6462 | 42 | 0.2773 | 0.0 | 0.2773 | | No log | 0.6769 | 44 | 0.2716 | 0.0 | 0.2716 | | No log | 0.7077 | 46 | 0.2703 | 0.0 | 0.2703 | | No log | 0.7385 | 48 | 0.2738 | 0.0 | 0.2738 | | No log | 0.7692 | 50 | 0.2740 | 0.0 | 0.2740 | | No log | 0.8 | 52 | 0.2800 | 0.0 | 0.2800 | | No log | 0.8308 | 54 | 0.2820 | 0.0 | 0.2820 | | No log | 0.8615 | 56 | 0.2816 | 0.0 | 0.2816 | | No log | 0.8923 | 58 | 0.2830 | 0.0 | 0.2830 | | No log | 0.9231 | 60 | 0.2845 | 0.0 | 0.2845 | | No log | 0.9538 | 62 | 0.2838 | 0.0 | 0.2838 | | No log | 0.9846 | 64 | 0.2831 | 0.0 | 0.2831 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1