salohnana2018 commited on
Commit
59c150a
·
verified ·
1 Parent(s): 6b21ef3

End of training

Browse files
Files changed (2) hide show
  1. README.md +95 -0
  2. model.safetensors +1 -1
README.md ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: salohnana2018/CAMEL-BERT-MSA-domianAdaption-Single-ABSA-HARD
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ - f1
9
+ - precision
10
+ - recall
11
+ model-index:
12
+ - name: ABSA-SentencePair-DAPT-HARDARABS-bert-base-Camel-MSA-ru1
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # ABSA-SentencePair-DAPT-HARDARABS-bert-base-Camel-MSA-ru1
20
+
21
+ This model is a fine-tuned version of [salohnana2018/CAMEL-BERT-MSA-domianAdaption-Single-ABSA-HARD](https://huggingface.co/salohnana2018/CAMEL-BERT-MSA-domianAdaption-Single-ABSA-HARD) on the None dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 1.6590
24
+ - Accuracy: 0.8965
25
+ - F1: 0.8965
26
+ - Precision: 0.8965
27
+ - Recall: 0.8965
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 5e-05
47
+ - train_batch_size: 32
48
+ - eval_batch_size: 32
49
+ - seed: 25
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - num_epochs: 30
53
+
54
+ ### Training results
55
+
56
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
57
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
58
+ | 0.5505 | 1.0 | 265 | 0.4846 | 0.7703 | 0.7703 | 0.7703 | 0.7703 |
59
+ | 0.354 | 2.0 | 530 | 0.3727 | 0.8852 | 0.8852 | 0.8852 | 0.8852 |
60
+ | 0.2455 | 3.0 | 795 | 0.4606 | 0.8582 | 0.8582 | 0.8582 | 0.8582 |
61
+ | 0.179 | 4.0 | 1060 | 0.5599 | 0.8771 | 0.8771 | 0.8771 | 0.8771 |
62
+ | 0.1452 | 5.0 | 1325 | 0.8984 | 0.8795 | 0.8795 | 0.8795 | 0.8795 |
63
+ | 0.1076 | 6.0 | 1590 | 0.8935 | 0.8960 | 0.8960 | 0.8960 | 0.8960 |
64
+ | 0.093 | 7.0 | 1855 | 0.6251 | 0.8757 | 0.8757 | 0.8757 | 0.8757 |
65
+ | 0.0779 | 8.0 | 2120 | 0.9415 | 0.8899 | 0.8899 | 0.8899 | 0.8899 |
66
+ | 0.0653 | 9.0 | 2385 | 0.9360 | 0.8965 | 0.8965 | 0.8965 | 0.8965 |
67
+ | 0.0514 | 10.0 | 2650 | 1.0234 | 0.8889 | 0.8889 | 0.8889 | 0.8889 |
68
+ | 0.0367 | 11.0 | 2915 | 1.3198 | 0.8951 | 0.8951 | 0.8951 | 0.8951 |
69
+ | 0.0414 | 12.0 | 3180 | 1.1830 | 0.8833 | 0.8833 | 0.8833 | 0.8833 |
70
+ | 0.0396 | 13.0 | 3445 | 1.1262 | 0.8885 | 0.8885 | 0.8885 | 0.8885 |
71
+ | 0.0338 | 14.0 | 3710 | 1.3073 | 0.8970 | 0.8970 | 0.8970 | 0.8970 |
72
+ | 0.0204 | 15.0 | 3975 | 1.2894 | 0.8946 | 0.8946 | 0.8946 | 0.8946 |
73
+ | 0.0232 | 16.0 | 4240 | 1.3265 | 0.8960 | 0.8960 | 0.8960 | 0.8960 |
74
+ | 0.0203 | 17.0 | 4505 | 1.2467 | 0.8974 | 0.8974 | 0.8974 | 0.8974 |
75
+ | 0.012 | 18.0 | 4770 | 1.5870 | 0.8960 | 0.8960 | 0.8960 | 0.8960 |
76
+ | 0.0155 | 19.0 | 5035 | 1.5296 | 0.8974 | 0.8974 | 0.8974 | 0.8974 |
77
+ | 0.0112 | 20.0 | 5300 | 1.6052 | 0.9026 | 0.9026 | 0.9026 | 0.9026 |
78
+ | 0.0109 | 21.0 | 5565 | 1.5280 | 0.8974 | 0.8974 | 0.8974 | 0.8974 |
79
+ | 0.012 | 22.0 | 5830 | 1.5513 | 0.8941 | 0.8941 | 0.8941 | 0.8941 |
80
+ | 0.0103 | 23.0 | 6095 | 1.6142 | 0.8984 | 0.8984 | 0.8984 | 0.8984 |
81
+ | 0.0116 | 24.0 | 6360 | 1.5363 | 0.8965 | 0.8965 | 0.8965 | 0.8965 |
82
+ | 0.0104 | 25.0 | 6625 | 1.6729 | 0.8984 | 0.8984 | 0.8984 | 0.8984 |
83
+ | 0.0079 | 26.0 | 6890 | 1.7198 | 0.8993 | 0.8993 | 0.8993 | 0.8993 |
84
+ | 0.0093 | 27.0 | 7155 | 1.5210 | 0.8941 | 0.8941 | 0.8941 | 0.8941 |
85
+ | 0.0077 | 28.0 | 7420 | 1.6023 | 0.8960 | 0.8960 | 0.8960 | 0.8960 |
86
+ | 0.0077 | 29.0 | 7685 | 1.6430 | 0.8960 | 0.8960 | 0.8960 | 0.8960 |
87
+ | 0.0073 | 30.0 | 7950 | 1.6590 | 0.8965 | 0.8965 | 0.8965 | 0.8965 |
88
+
89
+
90
+ ### Framework versions
91
+
92
+ - Transformers 4.38.1
93
+ - Pytorch 2.1.0+cu121
94
+ - Datasets 2.18.0
95
+ - Tokenizers 0.15.2
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:708061e1e3864d71aebb150f0e330433e0e51936de80d675c8ec90c87805d8c8
3
  size 436358132
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4e89a32f7f9cbbddb421eb618bcc7c9f8b718e182cd42b2794b9d25e42d2df9e
3
  size 436358132