Update README.md
Browse files
README.md
CHANGED
@@ -1,202 +1,124 @@
|
|
1 |
---
|
2 |
base_model: meta-llama/Llama-2-7b-hf
|
3 |
library_name: peft
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
# Model
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
[
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
[
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
200 |
-
### Framework versions
|
201 |
-
|
202 |
-
- PEFT 0.12.0
|
|
|
1 |
---
|
2 |
base_model: meta-llama/Llama-2-7b-hf
|
3 |
library_name: peft
|
4 |
+
license: apache-2.0
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
tags:
|
8 |
+
- retrieval
|
9 |
+
- instructions
|
10 |
+
datasets:
|
11 |
+
- samaya-ai/msmarco-w-instructions
|
12 |
---
|
13 |
|
14 |
+
# Model Summary
|
15 |
+
|
16 |
+
Promptriever is a new way of using dense retriever models. This version, `promptriever-llama2-7b-v1` was instruction-trained on a corpus of 490k MSMarco samples with instructions and 490k without instructions. See the [paper]() for more details.
|
17 |
+
|
18 |
+
- **Repository:** [orionw/Promptriever](https://github.com/orionw/Promptriever)
|
19 |
+
- **Paper:** todo
|
20 |
+
- **Instruction-Training Dataset:** [samaya-ai/msmarco-w-instructions](https://huggingface.co/datasets/samaya-ai/msmarco-w-instructions)
|
21 |
+
|
22 |
+
|
23 |
+
# Use
|
24 |
+
|
25 |
+
Below is an example to compute the similarity score of a query-document pair
|
26 |
+
```python
|
27 |
+
import torch
|
28 |
+
import torch.nn.functional as F
|
29 |
+
from transformers import AutoTokenizer, AutoModel
|
30 |
+
from peft import PeftModel, PeftConfig
|
31 |
+
import numpy as np
|
32 |
+
|
33 |
+
class Promptriever:
|
34 |
+
def __init__(self, model_name_or_path):
|
35 |
+
self.model, self.tokenizer = self.get_model(model_name_or_path)
|
36 |
+
self.model.eval()
|
37 |
+
|
38 |
+
def get_model(self, peft_model_name):
|
39 |
+
# Load the PEFT configuration to get the base model name
|
40 |
+
peft_config = PeftConfig.from_pretrained(peft_model_name)
|
41 |
+
base_model_name = peft_config.base_model_name_or_path
|
42 |
+
|
43 |
+
# Load the base model and tokenizer
|
44 |
+
base_model = AutoModel.from_pretrained(base_model_name)
|
45 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
|
46 |
+
tokenizer.pad_token = tokenizer.eos_token
|
47 |
+
|
48 |
+
# Load and merge the PEFT model
|
49 |
+
model = PeftModel.from_pretrained(base_model, peft_model_name)
|
50 |
+
model = model.merge_and_unload()
|
51 |
+
|
52 |
+
return model, tokenizer
|
53 |
+
|
54 |
+
def encode(self, texts):
|
55 |
+
inputs = self.tokenizer(texts, padding=True, truncation=True, return_tensors="pt")
|
56 |
+
with torch.no_grad():
|
57 |
+
outputs = self.model(**inputs)
|
58 |
+
embeddings = outputs.last_hidden_state[:, 0] # Using [CLS] token
|
59 |
+
return F.normalize(embeddings, p=2, dim=1)
|
60 |
+
|
61 |
+
# Initialize the model
|
62 |
+
model = Promptriever("samaya-ai/promptriever-llama2-7b-v1")
|
63 |
+
|
64 |
+
# Example query and instruction
|
65 |
+
query = "What universities are in Baltimore, Maryland?"
|
66 |
+
instruction = "A relevant document would describe any university in Baltimore. I am only interested in the United States, so ignore any document with a campus in Italy."
|
67 |
+
|
68 |
+
# Combine query and instruction with two spaces after "query: "
|
69 |
+
input_text = f"query: {query} {instruction}"
|
70 |
+
|
71 |
+
# Example documents
|
72 |
+
doc1 = "Johns Hopkins University (often abbreviated as Johns Hopkins, Hopkins, or JHU) is a private research university in Baltimore, Maryland. Founded in 1876, Johns Hopkins was the first American university based on the European research institution model. The university also has graduate campuses in Italy, China, and Washington, D.C."
|
73 |
+
doc2 = "Johns Hopkins University (often abbreviated as Johns Hopkins, Hopkins, or JHU) is a private research university in Baltimore, Maryland. Founded in 1876, Johns Hopkins was the first American university based on the European research institution model. The university also has graduate campuses in China, and Washington, D.C."
|
74 |
+
|
75 |
+
# Encode query and documents
|
76 |
+
query_embedding = model.encode([input_text])
|
77 |
+
doc_embeddings = model.encode([doc1, doc2])
|
78 |
+
|
79 |
+
# Calculate similarities
|
80 |
+
similarities = np.dot(query_embedding, doc_embeddings.T)[0]
|
81 |
+
|
82 |
+
# Print results
|
83 |
+
print("Similarities:")
|
84 |
+
print(f"Document 1: {similarities[0]:.4f}")
|
85 |
+
print(f"Document 2: {similarities[1]:.4f}")
|
86 |
+
```
|
87 |
+
|
88 |
+
# Training
|
89 |
+
|
90 |
+
We used a fork of [Tevatron](https://github.com/orionw/tevatron) to fine-tune promptriever with the [samaya-ai/msmarco-w-instructions](https://huggingface.co/datasets/samaya-ai/msmarco-w-instructions) dataset.
|
91 |
+
|
92 |
+
You can reproduce this with the TODO script (reproduced here for convenience).
|
93 |
+
|
94 |
+
```bash
|
95 |
+
#!/bin/bash
|
96 |
+
accelerate launch src/train_bash.py \
|
97 |
+
--stage sft \
|
98 |
+
--do_train \
|
99 |
+
--model_name_or_path "mistralai/Mistral-7B-Instruct-v0.2" \
|
100 |
+
--dataset followIR-train \
|
101 |
+
--template mistral \
|
102 |
+
--output_dir OUTPUT \
|
103 |
+
--finetuning_type lora \
|
104 |
+
--lora_target q_proj,v_proj,o_proj,k_proj \
|
105 |
+
--overwrite_cache \
|
106 |
+
--per_device_train_batch_size 32 \
|
107 |
+
--gradient_accumulation_steps 1 \
|
108 |
+
--lr_scheduler_type cosine \
|
109 |
+
--logging_steps 2 \
|
110 |
+
--save_steps 29 \
|
111 |
+
--learning_rate 3e-5 \
|
112 |
+
--num_train_epochs 8.0 \
|
113 |
+
--plot_loss \
|
114 |
+
--max_length 2048 \
|
115 |
+
--lora_rank 8 \
|
116 |
+
--lora_alpha 16 \
|
117 |
+
--bf16
|
118 |
+
```
|
119 |
+
|
120 |
+
# Citation
|
121 |
+
|
122 |
+
```bibtex
|
123 |
+
TODO
|
124 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|