PEFT
Safetensors
English
retrieval
instructions
orionweller commited on
Commit
7caab3e
·
verified ·
1 Parent(s): 882f884

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +119 -197
README.md CHANGED
@@ -1,202 +1,124 @@
1
  ---
2
  base_model: meta-llama/Llama-2-7b-hf
3
  library_name: peft
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
-
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
200
- ### Framework versions
201
-
202
- - PEFT 0.12.0
 
1
  ---
2
  base_model: meta-llama/Llama-2-7b-hf
3
  library_name: peft
4
+ license: apache-2.0
5
+ language:
6
+ - en
7
+ tags:
8
+ - retrieval
9
+ - instructions
10
+ datasets:
11
+ - samaya-ai/msmarco-w-instructions
12
  ---
13
 
14
+ # Model Summary
15
+
16
+ Promptriever is a new way of using dense retriever models. This version, `promptriever-llama2-7b-v1` was instruction-trained on a corpus of 490k MSMarco samples with instructions and 490k without instructions. See the [paper]() for more details.
17
+
18
+ - **Repository:** [orionw/Promptriever](https://github.com/orionw/Promptriever)
19
+ - **Paper:** todo
20
+ - **Instruction-Training Dataset:** [samaya-ai/msmarco-w-instructions](https://huggingface.co/datasets/samaya-ai/msmarco-w-instructions)
21
+
22
+
23
+ # Use
24
+
25
+ Below is an example to compute the similarity score of a query-document pair
26
+ ```python
27
+ import torch
28
+ import torch.nn.functional as F
29
+ from transformers import AutoTokenizer, AutoModel
30
+ from peft import PeftModel, PeftConfig
31
+ import numpy as np
32
+
33
+ class Promptriever:
34
+ def __init__(self, model_name_or_path):
35
+ self.model, self.tokenizer = self.get_model(model_name_or_path)
36
+ self.model.eval()
37
+
38
+ def get_model(self, peft_model_name):
39
+ # Load the PEFT configuration to get the base model name
40
+ peft_config = PeftConfig.from_pretrained(peft_model_name)
41
+ base_model_name = peft_config.base_model_name_or_path
42
+
43
+ # Load the base model and tokenizer
44
+ base_model = AutoModel.from_pretrained(base_model_name)
45
+ tokenizer = AutoTokenizer.from_pretrained(base_model_name)
46
+ tokenizer.pad_token = tokenizer.eos_token
47
+
48
+ # Load and merge the PEFT model
49
+ model = PeftModel.from_pretrained(base_model, peft_model_name)
50
+ model = model.merge_and_unload()
51
+
52
+ return model, tokenizer
53
+
54
+ def encode(self, texts):
55
+ inputs = self.tokenizer(texts, padding=True, truncation=True, return_tensors="pt")
56
+ with torch.no_grad():
57
+ outputs = self.model(**inputs)
58
+ embeddings = outputs.last_hidden_state[:, 0] # Using [CLS] token
59
+ return F.normalize(embeddings, p=2, dim=1)
60
+
61
+ # Initialize the model
62
+ model = Promptriever("samaya-ai/promptriever-llama2-7b-v1")
63
+
64
+ # Example query and instruction
65
+ query = "What universities are in Baltimore, Maryland?"
66
+ instruction = "A relevant document would describe any university in Baltimore. I am only interested in the United States, so ignore any document with a campus in Italy."
67
+
68
+ # Combine query and instruction with two spaces after "query: "
69
+ input_text = f"query: {query} {instruction}"
70
+
71
+ # Example documents
72
+ doc1 = "Johns Hopkins University (often abbreviated as Johns Hopkins, Hopkins, or JHU) is a private research university in Baltimore, Maryland. Founded in 1876, Johns Hopkins was the first American university based on the European research institution model. The university also has graduate campuses in Italy, China, and Washington, D.C."
73
+ doc2 = "Johns Hopkins University (often abbreviated as Johns Hopkins, Hopkins, or JHU) is a private research university in Baltimore, Maryland. Founded in 1876, Johns Hopkins was the first American university based on the European research institution model. The university also has graduate campuses in China, and Washington, D.C."
74
+
75
+ # Encode query and documents
76
+ query_embedding = model.encode([input_text])
77
+ doc_embeddings = model.encode([doc1, doc2])
78
+
79
+ # Calculate similarities
80
+ similarities = np.dot(query_embedding, doc_embeddings.T)[0]
81
+
82
+ # Print results
83
+ print("Similarities:")
84
+ print(f"Document 1: {similarities[0]:.4f}")
85
+ print(f"Document 2: {similarities[1]:.4f}")
86
+ ```
87
+
88
+ # Training
89
+
90
+ We used a fork of [Tevatron](https://github.com/orionw/tevatron) to fine-tune promptriever with the [samaya-ai/msmarco-w-instructions](https://huggingface.co/datasets/samaya-ai/msmarco-w-instructions) dataset.
91
+
92
+ You can reproduce this with the TODO script (reproduced here for convenience).
93
+
94
+ ```bash
95
+ #!/bin/bash
96
+ accelerate launch src/train_bash.py \
97
+ --stage sft \
98
+ --do_train \
99
+ --model_name_or_path "mistralai/Mistral-7B-Instruct-v0.2" \
100
+ --dataset followIR-train \
101
+ --template mistral \
102
+ --output_dir OUTPUT \
103
+ --finetuning_type lora \
104
+ --lora_target q_proj,v_proj,o_proj,k_proj \
105
+ --overwrite_cache \
106
+ --per_device_train_batch_size 32 \
107
+ --gradient_accumulation_steps 1 \
108
+ --lr_scheduler_type cosine \
109
+ --logging_steps 2 \
110
+ --save_steps 29 \
111
+ --learning_rate 3e-5 \
112
+ --num_train_epochs 8.0 \
113
+ --plot_loss \
114
+ --max_length 2048 \
115
+ --lora_rank 8 \
116
+ --lora_alpha 16 \
117
+ --bf16
118
+ ```
119
+
120
+ # Citation
121
+
122
+ ```bibtex
123
+ TODO
124
+ ```