--- language: - lt license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - lt - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: sammy786/wav2vec2-xlsr-lithuanian results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: lt metrics: - name: Test WER type: wer value: 14.67 - name: Test CER type: cer value: 2.77 --- # sammy786/wav2vec2-xlsr-lithuanian This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - lt dataset. It achieves the following results on evaluation set (which is 10 percent of train data set merged with other and dev datasets): - Loss: 13.1811 - Wer: 24.2570 ## Model description "facebook/wav2vec2-xls-r-1b" was finetuned. ## Intended uses & limitations More information needed ## Training and evaluation data Training data - Common voice Finnish train.tsv, dev.tsv and other.tsv ## Training procedure For creating the train dataset, all possible datasets were appended and 90-10 split was used. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000045637994662983496 - train_batch_size: 8 - eval_batch_size: 16 - seed: 13 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 500 - num_epochs: 40 - mixed_precision_training: Native AMP ### Training results | Step | Training Loss | Validation Loss | Wer | |:-----:|:-------------:|:---------------:|:--------:| | 200 | 5.718700 | 2.897032 | 1.000000 | | 400 | 1.340000 | 0.309548 | 0.507284 | | 600 | 0.799100 | 0.220205 | 0.402098 | | 800 | 0.494400 | 0.185093 | 0.352855 | | 1000 | 0.370800 | 0.165869 | 0.334207 | | 1200 | 0.312500 | 0.159801 | 0.324009 | | 1400 | 0.276100 | 0.148066 | 0.321678 | | 1600 | 0.250100 | 0.153748 | 0.311626 | | 1800 | 0.226400 | 0.147437 | 0.302885 | | 2000 | 0.206900 | 0.141176 | 0.296037 | | 2200 | 0.189900 | 0.142161 | 0.288170 | | 2400 | 0.192100 | 0.138029 | 0.286568 | | 2600 | 0.175600 | 0.139496 | 0.283654 | | 2800 | 0.156900 | 0.138609 | 0.283217 | | 3000 | 0.149400 | 0.140468 | 0.281906 | | 3200 | 0.144600 | 0.132472 | 0.278263 | | 3400 | 0.144100 | 0.141028 | 0.277535 | | 3600 | 0.133000 | 0.134287 | 0.275495 | | 3800 | 0.126600 | 0.149136 | 0.277681 | | 4000 | 0.123500 | 0.132180 | 0.266463 | | 4200 | 0.113000 | 0.137942 | 0.268211 | | 4400 | 0.111700 | 0.140038 | 0.272873 | | 4600 | 0.108600 | 0.136756 | 0.264132 | | 4800 | 0.103600 | 0.137541 | 0.263403 | | 5000 | 0.098000 | 0.140435 | 0.264860 | | 5200 | 0.095800 | 0.136950 | 0.262383 | | 5400 | 0.094000 | 0.128214 | 0.263986 | | 5600 | 0.085300 | 0.125024 | 0.259761 | | 5800 | 0.078900 | 0.128575 | 0.260198 | | 6000 | 0.083300 | 0.135496 | 0.258887 | | 6200 | 0.078800 | 0.131706 | 0.259178 | | 6400 | 0.073800 | 0.128451 | 0.255390 | | 6600 | 0.072600 | 0.131245 | 0.252768 | | 6800 | 0.073300 | 0.131525 | 0.249417 | | 7000 | 0.069000 | 0.128627 | 0.255536 | | 7200 | 0.064400 | 0.127767 | 0.250583 | | 7400 | 0.065400 | 0.129557 | 0.247815 | | 7600 | 0.061200 | 0.129734 | 0.250146 | | 7800 | 0.059100 | 0.135124 | 0.249709 | | 8000 | 0.057000 | 0.132850 | 0.249126 | | 8200 | 0.056100 | 0.128827 | 0.248252 | | 8400 | 0.056400 | 0.130229 | 0.246795 | | 8600 | 0.052800 | 0.128939 | 0.245775 | | 8800 | 0.051100 | 0.131892 | 0.248543 | | 9000 | 0.052900 | 0.132062 | 0.244464 | | 9200 | 0.048200 | 0.130988 | 0.244172 | | 9400 | 0.047700 | 0.131811 | 0.242570 | | 9600 | 0.050000 | 0.133832 | 0.245484 | | 9800 | 0.047500 | 0.134340 | 0.243881 | | 10000 | 0.048400 | 0.133388 | 0.243590 | | 10200 | 0.047800 | 0.132729 | 0.244464 | | 10400 | 0.049000 | 0.131695 | 0.245047 | | 10600 | 0.044400 | 0.132154 | 0.245484 | | 10800 | 0.050100 | 0.131575 | 0.245192 | | 11000 | 0.047700 | 0.131211 | 0.245192 | | 11200 | 0.046000 | 0.131293 | 0.245047 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.10.3 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id sammy786/wav2vec2-xlsr-lithuanian --dataset mozilla-foundation/common_voice_8_0 --config lt --split test ```