--- base_model: google-t5/t5-base datasets: - Andyrasika/TweetSumm-tuned library_name: peft license: apache-2.0 metrics: - rouge - f1 - precision - recall tags: - generated_from_trainer model-index: - name: t5-base-LoRA-TweetSumm-1724689228 results: - task: type: summarization name: Summarization dataset: name: Andyrasika/TweetSumm-tuned type: Andyrasika/TweetSumm-tuned metrics: - type: rouge value: 0.4651 name: Rouge1 - type: f1 value: 0.8924 name: F1 - type: precision value: 0.8906 name: Precision - type: recall value: 0.8943 name: Recall --- # t5-base-LoRA-TweetSumm-1724689228 This model is a fine-tuned version of [google-t5/t5-base](https://huggingface.co/google-t5/t5-base) on the Andyrasika/TweetSumm-tuned dataset. It achieves the following results on the evaluation set: - Loss: 1.7954 - Rouge1: 0.4651 - Rouge2: 0.218 - Rougel: 0.3904 - Rougelsum: 0.4291 - Gen Len: 41.8818 - F1: 0.8924 - Precision: 0.8906 - Recall: 0.8943 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|:------:|:---------:|:------:| | 2.3566 | 1.0 | 440 | 1.8523 | 0.4801 | 0.2302 | 0.4078 | 0.4472 | 41.6727 | 0.8942 | 0.8938 | 0.8947 | | 1.2968 | 2.0 | 880 | 1.7823 | 0.447 | 0.2102 | 0.3795 | 0.4136 | 41.9091 | 0.8929 | 0.8925 | 0.8935 | | 1.7438 | 3.0 | 1320 | 1.7954 | 0.4651 | 0.218 | 0.3904 | 0.4291 | 41.8818 | 0.8924 | 0.8906 | 0.8943 | ### Framework versions - PEFT 0.12.1.dev0 - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1