--- base_model: google-t5/t5-base datasets: - Andyrasika/TweetSumm-tuned library_name: peft license: apache-2.0 metrics: - rouge - f1 - precision - recall tags: - generated_from_trainer model-index: - name: t5-base-qlora-finetune-tweetsumm-1724817707 results: - task: type: summarization name: Summarization dataset: name: Andyrasika/TweetSumm-tuned type: Andyrasika/TweetSumm-tuned metrics: - type: rouge value: 0.4708 name: Rouge1 - type: f1 value: 0.8942 name: F1 - type: precision value: 0.8941 name: Precision - type: recall value: 0.8945 name: Recall --- # t5-base-qlora-finetune-tweetsumm-1724817707 This model is a fine-tuned version of [google-t5/t5-base](https://huggingface.co/google-t5/t5-base) on the Andyrasika/TweetSumm-tuned dataset. It achieves the following results on the evaluation set: - Loss: 1.7934 - Rouge1: 0.4708 - Rouge2: 0.2246 - Rougel: 0.3984 - Rougelsum: 0.4357 - Gen Len: 49.4091 - F1: 0.8942 - Precision: 0.8941 - Recall: 0.8945 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|:------:|:---------:|:------:| | 2.062 | 1.0 | 110 | 1.8472 | 0.4633 | 0.2177 | 0.3919 | 0.428 | 49.7273 | 0.8911 | 0.8897 | 0.8927 | | 1.7853 | 2.0 | 220 | 1.8120 | 0.4633 | 0.2203 | 0.3941 | 0.4285 | 49.4273 | 0.8953 | 0.8945 | 0.8963 | | 1.5952 | 3.0 | 330 | 1.7934 | 0.4708 | 0.2246 | 0.3984 | 0.4357 | 49.4091 | 0.8942 | 0.8941 | 0.8945 | ### Framework versions - PEFT 0.12.1.dev0 - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1