--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: 14apr-bert-uncased results: [] --- # 14apr-bert-uncased This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1141 - Precision: 0.9797 - Recall: 0.9796 - F1: 0.9797 - Accuracy: 0.9774 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1405 | 1.0 | 2500 | 0.1016 | 0.9731 | 0.9761 | 0.9746 | 0.9721 | | 0.0994 | 2.0 | 5000 | 0.0939 | 0.9776 | 0.9774 | 0.9775 | 0.9750 | | 0.0731 | 3.0 | 7500 | 0.0968 | 0.9783 | 0.9790 | 0.9787 | 0.9767 | | 0.045 | 4.0 | 10000 | 0.1075 | 0.9790 | 0.9798 | 0.9794 | 0.9773 | | 0.035 | 5.0 | 12500 | 0.1141 | 0.9797 | 0.9796 | 0.9797 | 0.9774 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2