File size: 16,524 Bytes
bfa873c
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space (Tuple)\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Uses the CombinedExtractor\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7e24c3e456c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e24c3e3ec80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1691548804497634681, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA7cUzv0bFJr+NYww+gAVFPzH6ur/3aAw+76iTvxfKgL7HZww+8dHHPsujyr9XaAw+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAISqDPvf3PD+QEmo/JVDJP0Stkj8pVIy/mdmMvWL0ZD8pVIy/i+Jav/VGNb+h39g/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAAAfuCY/b5KwPuZL1r6Wf5a+DODHv2qSEsAmVju/7cUzv0bFJr+NYww+iQ6CvCcBEb1o+Cg7DzvzPBx1hzx22349otm3u+C9x7xHPQU8PHdKP25o576rcHS/D03/PQSDLD1gr8g8QxZEv4AFRT8x+rq/92gMPmTug7wwNxG95cWqv//R9DzcoIc8dtt+ParZt7vgvce87VIGPNwEHz7bFhy9EVrpvrWxaz97QaO/HPVsP3GSRL/vqJO/F8qAvsdnDD4nZ4O8aRkRvQ6OYTteuPI848mKPNEjfj2Jffq733XRvBqPBzzoyE8/1Hiyvh3fcb8qsS0+DRrKPtba8zyUi0S/8dHHPsujyr9XaAw+p5ODvNccEb1H4x/Acx71PO3Zhzx22349otm3u+C9x7zj8Ac8lGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[-0.70223886 -0.65144765  0.1370985 ]\n [ 0.7696152  -1.4607602   0.13711916]\n [-1.153593   -0.25154182  0.13711463]\n [ 0.3902736  -1.5831236   0.13711677]]", "desired_goal": "[[ 0.2561808   0.73815864  0.91434574]\n [ 1.5727583   1.1459126  -1.0963184 ]\n [-0.06877441  0.894354   -1.0963184 ]\n [-0.8550193  -0.70811397  1.6943246 ]]", "observation": "[[ 0.65124696  0.3448672  -0.4185478  -0.29394215 -1.5615249  -2.2901864\n  -0.7317833  -0.70223886 -0.65144765  0.1370985  -0.01587607 -0.03540149\n   0.00257828  0.02969125  0.01653533  0.06222101 -0.00561066 -0.02438253\n   0.00813229]\n [ 0.7908819  -0.4519686  -0.9548442   0.1246587   0.04211713  0.02449769\n  -0.7659647   0.7696152  -1.4607602   0.13711916 -0.01610488 -0.03545302\n  -1.3341643   0.02988529  0.0165562   0.06222101 -0.00561066 -0.02438253\n   0.00819848]\n [ 0.15529197 -0.03810773 -0.45576528  0.92068034 -1.2754358   0.9256151\n  -0.7678595  -1.153593   -0.25154182  0.13711463 -0.0160404  -0.03542462\n   0.00344169  0.02962893  0.01694197  0.06204588 -0.00764436 -0.0255689\n   0.00827386]\n [ 0.81165934 -0.3485781  -0.9448107   0.16962114  0.39473     0.02976744\n  -0.7677548   0.3902736  -1.5831236   0.13711677 -0.01606162 -0.03542789\n  -2.498247    0.02992175  0.01658341  0.06222101 -0.00561066 -0.02438253\n   0.00829718]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAz2gDvtStnb0K16M8nAdHPTcFAr4K16M8myjZPUXu5b0K16M8WDejPa74270K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAU0f8PZXcqD1Ghws+s9R4PUKA/j3QTRs+YDOivHrHQb1ecRY+MLMTPZGs8zy2KEw+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAz2gDvtStnb0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAJwHRz03BQK+CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAACbKNk9Re7lvQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAWDejPa74270K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[-0.1283295  -0.07699171  0.02      ]\n [ 0.04859124 -0.12697302  0.02      ]\n [ 0.10603448 -0.11227087  0.02      ]\n [ 0.0796954  -0.10740791  0.02      ]]", "desired_goal": "[[ 0.12318292  0.08245198  0.13625821]\n [ 0.06074972  0.12426807  0.15166402]\n [-0.01979989 -0.04730938  0.14691684]\n [ 0.03605956  0.02974537  0.19937405]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00  0.0000000e+00 -1.2832950e-01\n  -7.6991707e-02  2.0000000e-02  0.0000000e+00 -0.0000000e+00\n   0.0000000e+00  0.0000000e+00  0.0000000e+00  0.0000000e+00\n   0.0000000e+00  0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00  0.0000000e+00  4.8591241e-02\n  -1.2697302e-01  2.0000000e-02  0.0000000e+00 -0.0000000e+00\n   0.0000000e+00  0.0000000e+00  0.0000000e+00  0.0000000e+00\n   0.0000000e+00  0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00  0.0000000e+00  1.0603448e-01\n  -1.1227087e-01  2.0000000e-02  0.0000000e+00 -0.0000000e+00\n   0.0000000e+00  0.0000000e+00  0.0000000e+00  0.0000000e+00\n   0.0000000e+00  0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00  0.0000000e+00  7.9695404e-02\n  -1.0740791e-01  2.0000000e-02  0.0000000e+00 -0.0000000e+00\n   0.0000000e+00  0.0000000e+00  0.0000000e+00  0.0000000e+00\n   0.0000000e+00  0.0000000e+00  0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0CnrRy3LFGYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnrPuzQeFMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnrNOv2Xb/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnrX4IKMNudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnrieHzpX7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnrga5f+judX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnrhAOjIq9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnrxWvKU3XdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnr/K3EyckdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnr+iY1He8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnsAjlxOtXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnsTDYh+vydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnsgnBLwnZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnsf+p4rz5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnsj6/yoXLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cns3PepGWldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CntExhc7hfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CntDkvK2a2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CntEOgYgq3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CntQ/0Eov0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cntb7fYSQHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CntaOQhfShdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CntYm1QZXNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CntjtmL9/CdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cntuu4G2TgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CntsmVJL/TdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CntqcIZ62OdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnt1eHi3ocdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnuASZjQRgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnt+Ncv/R3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnt77aRISUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnuGzMRpUQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnuRQKa5PNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnuPKraM72dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnuNcqFyq/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnuYqVyFPBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnujF+uvECdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnug2oWHk+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnueslLOAzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnuqYoJAt4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnu1bsfJV9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnuza6z3RHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnuyUu+RHPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnu+5mI0qIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnvKGyX2M9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnvINhd+ocdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnvGAjps42dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnvRouXeFddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnvcjr7fpEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnvacVQAMldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnvX/20zCUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnviqdYnv2dX2UKGgGR8A6AAAAAAAAaAdLG2gIR0CnvhAb6xgRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnvtNzKcNIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnvrEsBhhIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnvz0oBq9HdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnvyYDTz/ZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnv+rEk0JodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnv8hIOH32dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnwHjx0+1SdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnwF/PX05EdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnwSar3j+8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnwQRY7q6fdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnwZl9jPOZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnwX+Wv8qGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnwkJ6po9LdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnwiIKc/dJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnwqNpdrwfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnwot52QnydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnw05VwPy1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnwyyrxRVIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnw8EzXSSedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnw6pVKf4AdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnxG5JCjUNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnxEwTdtVJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnxM3Kji4sdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnxLOy3Td+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnxXuBDohZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnxVnIQvpRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnxeZdv864dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnxc/UWl/IdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnxpKkVN5/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnxnNiH6/JdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnxwhIOH32dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnxvLYXfqHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnx7dugpSadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnx5efAbhndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnyD6CDmKZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnyDosZpBYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnyQiZfD1odX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnyPVN5+pgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnyil5OafBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnyiT1kDp1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnyvfaQFLWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnyuVBUrCndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cny/ydFvycdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cny/Zmh/RWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnzMb1ZkkKdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CnzNC7TUiIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnzLhOgxrSdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True  True  True  True]", "bounded_above": "[ True  True  True  True]", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}