File size: 2,870 Bytes
8b698e1 d3be7ee 22b0304 8b763cb 92bd9cc 8b763cb 8bd73f4 8b763cb 5b7f3a2 8bd73f4 a84c331 8bd73f4 8b763cb 8bd73f4 75c35b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
---
tags:
- text-to-image
- flux
- lora
- diffusers
- template:sd-lora
widget:
- text: amul girl - playing cricket at beach
output:
url: samples/sample_3.jpg
- text: amul girl - M. Karunanidhi eminant DMK leader, writer and Amul Butter.
output:
url: samples/1724439147535__000000500_0.jpg
- text: amul girl - When helmets were made compulsory in Bombay
output:
url: samples/1724439166070__000000500_1.jpg
base_model: black-forest-labs/FLUX.1-dev
instance_prompt: amul girl
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
pipeline_tag: text-to-image
---
# Description
This is Text-to-Image Model Finetuned on top of [Flux-Dev Model](https://huggingface.co/black-forest-labs/FLUX.1-dev) on a Dataset of Amul mascot girl Images
# Amul Mascot girl - Lora-fp16-v2
Model trained with [AI Toolkit by Ostris](https://github.com/ostris/ai-toolkit)
<Gallery />
## Trigger words
You should use `amul girl` to trigger the image generation.
## Download model
Weights for this model are available in Safetensors format.
[Download](/None/tree/main) them in the Files & versions tab.
Scripts for preprocessing , inferencing and finetuning the most popular [amul mascot girl](https://en.wikipedia.org/wiki/Amul_girl)
- Used flux 1.1 dev model with lora (low rank adaption) for finetuning text to image generation
### preprocessing
https://github.com/sanjay7178/amul-mascot-girl-flux-t2i/blob/main/amul_mascot_girl_preprocess.ipynb
### dataset
https://huggingface.co/datasets/sanjay7178/amul-mascot-girl
### configuration
Install conda-forge or mamba-forge
create virtual environment
```bash
conda create -n amul python=3.10
conda activate amul # change current env to amul
```
Linux:
```bash
git clone https://github.com/ostris/ai-toolkit.git
cd ai-toolkit
git submodule update --init --recursive
python3 -m venv venv
source venv/bin/activate
# .\venv\Scripts\activate on windows
# install torch first
pip3 install torch
pip3 install -r requirements.txt
```
Windows:
```bash
git clone https://github.com/ostris/ai-toolkit.git
cd ai-toolkit
git submodule update --init --recursive
python -m venv venv
.\venv\Scripts\activate
pip install torch torchvision --index-url https://download.pytorch.org/whl/cu121
pip install -r requirements.txt
```
### finetuning
Before fine tuning change dataset path and some required vram hyperparameters according to your system requirements from `config.yml` in files
```bash
python run.py /<relative path>/config.yml
```
### inference (gradio demo)
https://github.com/sanjay7178/amul-mascot-girl-flux-t2i/tree/main/lora-gradio-demo
### results
###### Loss Plot
<a href="url"><img src="https://github.com/user-attachments/assets/59177225-78cc-4963-9698-798aa5fdadfc" align="left" height="400" width="500" ></a> |