--- language: - en tags: - coreference-resolution license: - cc-by-nc-sa-4.0 datasets: - PreCo metrics: - CoNLL task_categories: - coreference-resolution model-index: - name: sapienzanlp/maverick-mes-preco results: - task: type: coreference-resolution name: coreference-resolution dataset: name: preco type: coreference metrics: - name: Avg. F1 type: CoNLL value: 87.4 --- # Maverick mes PreCo Official weights for *Maverick-mes* trained on PreCo and based on DeBERTa-large. This model achieves 87.4 Avg CoNLL-F1 on PreCo coreference resolution dataset. Other available models at [SapienzaNLP huggingface hub](https://huggingface.co/collections/sapienzanlp/maverick-coreference-resolution-66a750a50246fad8d9c7086a): | hf_model_name | training dataset | Score | Singletons | |:-----------------------------------:|:----------------:|:-----:|:----------:| | ["sapienzanlp/maverick-mes-ontonotes"](https://huggingface.co/sapienzanlp/maverick-mes-ontonotes) | OntoNotes | 83.6 | No | | ["sapienzanlp/maverick-mes-litbank"](https://huggingface.co/sapienzanlp/maverick-mes-litbank) | LitBank | 78.0 | Yes | | ["sapienzanlp/maverick-mes-preco"](https://huggingface.co/sapienzanlp/maverick-mes-preco) | PreCo | 87.4 | Yes | N.B. Each dataset has different annotation guidelines, choose your model according to your use case. ## Maverick: Efficient and Accurate Coreference Resolution Defying recent trends [![Conference](https://img.shields.io/badge/ACL%202024%20Paper-red)](https://arxiv.org/pdf/2407.21489) [![License: CC BY-NC 4.0](https://img.shields.io/badge/License-CC%20BY--NC%204.0-green.svg)](https://creativecommons.org/licenses/by-nc/4.0/) [![Pip Package](https://img.shields.io/badge/🐍%20Python%20package-blue)](https://pypi.org/project/maverick-coref/) [![git](https://img.shields.io/badge/Git%20Repo%20-yellow.svg)](https://github.com/SapienzaNLP/maverick-coref) ### Citation ``` @inproceedings{martinelli-etal-2024-maverick, title = "Maverick: Efficient and Accurate Coreference Resolution Defying Recent Trends", author = "Martinelli, Giuliano and Barba, Edoardo and Navigli, Roberto", booktitle = "Proceedings of the Annual Meeting of the Association for Computational Linguistics (ACL 2024)", year = "2024", address = "Bangkok, Thailand", publisher = "Association for Computational Linguistics", } ```