sara-nabhani commited on
Commit
a55ecaa
·
1 Parent(s): 8c55c1d

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +99 -0
README.md ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - esnli
7
+ metrics:
8
+ - accuracy
9
+ - f1
10
+ - rouge
11
+ - bleu
12
+ model-index:
13
+ - name: google-flan-t5-small-e-snli-generation-label_and_explanation-selected-b64
14
+ results:
15
+ - task:
16
+ name: Sequence-to-sequence Language Modeling
17
+ type: text2text-generation
18
+ dataset:
19
+ name: esnli
20
+ type: esnli
21
+ config: plain_text
22
+ split: validation
23
+ args: plain_text
24
+ metrics:
25
+ - name: Accuracy
26
+ type: accuracy
27
+ value: 0.8691322901849218
28
+ - name: F1
29
+ type: f1
30
+ value: 0.8686267742768865
31
+ - name: Rouge1
32
+ type: rouge
33
+ value: 0.6062872493545299
34
+ - name: Bleu
35
+ type: bleu
36
+ value: 0.4012059786299585
37
+ ---
38
+
39
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
40
+ should probably proofread and complete it, then remove this comment. -->
41
+
42
+ # google-flan-t5-small-e-snli-generation-label_and_explanation-selected-b64
43
+
44
+ This model is a fine-tuned version of [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) on the esnli dataset.
45
+ It achieves the following results on the evaluation set:
46
+ - Loss: 1.8703
47
+ - Accuracy: 0.8691
48
+ - F1: 0.8686
49
+ - Bertscore F1: 0.9338
50
+ - Rouge1: 0.6063
51
+ - Rouge2: 0.3995
52
+ - Rougel: 0.5500
53
+ - Rougelsum: 0.5521
54
+ - Bleu: 0.4012
55
+
56
+ ## Model description
57
+
58
+ More information needed
59
+
60
+ ## Intended uses & limitations
61
+
62
+ More information needed
63
+
64
+ ## Training and evaluation data
65
+
66
+ More information needed
67
+
68
+ ## Training procedure
69
+
70
+ ### Training hyperparameters
71
+
72
+ The following hyperparameters were used during training:
73
+ - learning_rate: 0.001
74
+ - train_batch_size: 64
75
+ - eval_batch_size: 64
76
+ - seed: 42
77
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
78
+ - lr_scheduler_type: linear
79
+ - lr_scheduler_warmup_ratio: 0.05
80
+ - num_epochs: 10
81
+
82
+ ### Training results
83
+
84
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Bertscore F1 | Rouge1 | Rouge2 | Rougel | Rougelsum | Bleu |
85
+ |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:------------:|:------:|:------:|:------:|:---------:|:------:|
86
+ | 1.4692 | 0.23 | 2000 | 1.7872 | 0.8212 | 0.8203 | 0.9287 | 0.5787 | 0.3685 | 0.5239 | 0.5257 | 0.3856 |
87
+ | 1.2505 | 0.47 | 4000 | 1.8808 | 0.8263 | 0.8264 | 0.9308 | 0.5870 | 0.3749 | 0.5321 | 0.5337 | 0.3904 |
88
+ | 1.2003 | 0.7 | 6000 | 1.8477 | 0.8475 | 0.8481 | 0.9325 | 0.5984 | 0.3913 | 0.5452 | 0.5469 | 0.4004 |
89
+ | 1.1624 | 0.93 | 8000 | 1.8244 | 0.8599 | 0.8587 | 0.9335 | 0.6029 | 0.3928 | 0.5441 | 0.5457 | 0.4024 |
90
+ | 1.1155 | 1.16 | 10000 | 1.8499 | 0.8695 | 0.8688 | 0.9331 | 0.6083 | 0.4019 | 0.5519 | 0.5540 | 0.4022 |
91
+ | 1.0913 | 1.4 | 12000 | 1.8703 | 0.8691 | 0.8686 | 0.9338 | 0.6063 | 0.3995 | 0.5500 | 0.5521 | 0.4012 |
92
+
93
+
94
+ ### Framework versions
95
+
96
+ - Transformers 4.27.4
97
+ - Pytorch 2.0.0+cu117
98
+ - Datasets 2.11.0
99
+ - Tokenizers 0.13.2