sara-nabhani
commited on
Commit
·
a55ecaa
1
Parent(s):
8c55c1d
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- esnli
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
- f1
|
10 |
+
- rouge
|
11 |
+
- bleu
|
12 |
+
model-index:
|
13 |
+
- name: google-flan-t5-small-e-snli-generation-label_and_explanation-selected-b64
|
14 |
+
results:
|
15 |
+
- task:
|
16 |
+
name: Sequence-to-sequence Language Modeling
|
17 |
+
type: text2text-generation
|
18 |
+
dataset:
|
19 |
+
name: esnli
|
20 |
+
type: esnli
|
21 |
+
config: plain_text
|
22 |
+
split: validation
|
23 |
+
args: plain_text
|
24 |
+
metrics:
|
25 |
+
- name: Accuracy
|
26 |
+
type: accuracy
|
27 |
+
value: 0.8691322901849218
|
28 |
+
- name: F1
|
29 |
+
type: f1
|
30 |
+
value: 0.8686267742768865
|
31 |
+
- name: Rouge1
|
32 |
+
type: rouge
|
33 |
+
value: 0.6062872493545299
|
34 |
+
- name: Bleu
|
35 |
+
type: bleu
|
36 |
+
value: 0.4012059786299585
|
37 |
+
---
|
38 |
+
|
39 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
40 |
+
should probably proofread and complete it, then remove this comment. -->
|
41 |
+
|
42 |
+
# google-flan-t5-small-e-snli-generation-label_and_explanation-selected-b64
|
43 |
+
|
44 |
+
This model is a fine-tuned version of [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) on the esnli dataset.
|
45 |
+
It achieves the following results on the evaluation set:
|
46 |
+
- Loss: 1.8703
|
47 |
+
- Accuracy: 0.8691
|
48 |
+
- F1: 0.8686
|
49 |
+
- Bertscore F1: 0.9338
|
50 |
+
- Rouge1: 0.6063
|
51 |
+
- Rouge2: 0.3995
|
52 |
+
- Rougel: 0.5500
|
53 |
+
- Rougelsum: 0.5521
|
54 |
+
- Bleu: 0.4012
|
55 |
+
|
56 |
+
## Model description
|
57 |
+
|
58 |
+
More information needed
|
59 |
+
|
60 |
+
## Intended uses & limitations
|
61 |
+
|
62 |
+
More information needed
|
63 |
+
|
64 |
+
## Training and evaluation data
|
65 |
+
|
66 |
+
More information needed
|
67 |
+
|
68 |
+
## Training procedure
|
69 |
+
|
70 |
+
### Training hyperparameters
|
71 |
+
|
72 |
+
The following hyperparameters were used during training:
|
73 |
+
- learning_rate: 0.001
|
74 |
+
- train_batch_size: 64
|
75 |
+
- eval_batch_size: 64
|
76 |
+
- seed: 42
|
77 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
78 |
+
- lr_scheduler_type: linear
|
79 |
+
- lr_scheduler_warmup_ratio: 0.05
|
80 |
+
- num_epochs: 10
|
81 |
+
|
82 |
+
### Training results
|
83 |
+
|
84 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Bertscore F1 | Rouge1 | Rouge2 | Rougel | Rougelsum | Bleu |
|
85 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:------------:|:------:|:------:|:------:|:---------:|:------:|
|
86 |
+
| 1.4692 | 0.23 | 2000 | 1.7872 | 0.8212 | 0.8203 | 0.9287 | 0.5787 | 0.3685 | 0.5239 | 0.5257 | 0.3856 |
|
87 |
+
| 1.2505 | 0.47 | 4000 | 1.8808 | 0.8263 | 0.8264 | 0.9308 | 0.5870 | 0.3749 | 0.5321 | 0.5337 | 0.3904 |
|
88 |
+
| 1.2003 | 0.7 | 6000 | 1.8477 | 0.8475 | 0.8481 | 0.9325 | 0.5984 | 0.3913 | 0.5452 | 0.5469 | 0.4004 |
|
89 |
+
| 1.1624 | 0.93 | 8000 | 1.8244 | 0.8599 | 0.8587 | 0.9335 | 0.6029 | 0.3928 | 0.5441 | 0.5457 | 0.4024 |
|
90 |
+
| 1.1155 | 1.16 | 10000 | 1.8499 | 0.8695 | 0.8688 | 0.9331 | 0.6083 | 0.4019 | 0.5519 | 0.5540 | 0.4022 |
|
91 |
+
| 1.0913 | 1.4 | 12000 | 1.8703 | 0.8691 | 0.8686 | 0.9338 | 0.6063 | 0.3995 | 0.5500 | 0.5521 | 0.4012 |
|
92 |
+
|
93 |
+
|
94 |
+
### Framework versions
|
95 |
+
|
96 |
+
- Transformers 4.27.4
|
97 |
+
- Pytorch 2.0.0+cu117
|
98 |
+
- Datasets 2.11.0
|
99 |
+
- Tokenizers 0.13.2
|