--- license: apache-2.0 tags: - generated_from_trainer datasets: - esnli metrics: - accuracy - f1 - rouge - bleu base_model: google/flan-t5-small model-index: - name: google-flan-t5-small-e-snli-generation-label_and_explanation-selected-b64 results: - task: type: text2text-generation name: Sequence-to-sequence Language Modeling dataset: name: esnli type: esnli config: plain_text split: validation args: plain_text metrics: - type: accuracy value: 0.8691322901849218 name: Accuracy - type: f1 value: 0.8686267742768865 name: F1 - type: rouge value: 0.6062872493545299 name: Rouge1 - type: bleu value: 0.4012059786299585 name: Bleu --- # google-flan-t5-small-e-snli-generation-label_and_explanation-selected-b64 This model is a fine-tuned version of [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) on the esnli dataset. It achieves the following results on the evaluation set: - Loss: 1.8703 - Accuracy: 0.8691 - F1: 0.8686 - Bertscore F1: 0.9338 - Rouge1: 0.6063 - Rouge2: 0.3995 - Rougel: 0.5500 - Rougelsum: 0.5521 - Bleu: 0.4012 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Bertscore F1 | Rouge1 | Rouge2 | Rougel | Rougelsum | Bleu | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:------------:|:------:|:------:|:------:|:---------:|:------:| | 1.4692 | 0.23 | 2000 | 1.7872 | 0.8212 | 0.8203 | 0.9287 | 0.5787 | 0.3685 | 0.5239 | 0.5257 | 0.3856 | | 1.2505 | 0.47 | 4000 | 1.8808 | 0.8263 | 0.8264 | 0.9308 | 0.5870 | 0.3749 | 0.5321 | 0.5337 | 0.3904 | | 1.2003 | 0.7 | 6000 | 1.8477 | 0.8475 | 0.8481 | 0.9325 | 0.5984 | 0.3913 | 0.5452 | 0.5469 | 0.4004 | | 1.1624 | 0.93 | 8000 | 1.8244 | 0.8599 | 0.8587 | 0.9335 | 0.6029 | 0.3928 | 0.5441 | 0.5457 | 0.4024 | | 1.1155 | 1.16 | 10000 | 1.8499 | 0.8695 | 0.8688 | 0.9331 | 0.6083 | 0.4019 | 0.5519 | 0.5540 | 0.4022 | | 1.0913 | 1.4 | 12000 | 1.8703 | 0.8691 | 0.8686 | 0.9338 | 0.6063 | 0.3995 | 0.5500 | 0.5521 | 0.4012 | ### Framework versions - Transformers 4.27.4 - Pytorch 2.0.0+cu117 - Datasets 2.11.0 - Tokenizers 0.13.2