--- library_name: transformers language: - hu license: mit base_model: openai/whisper-large-v3-turbo tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-large-v3-turbo-finetuned-hu results: [] --- # fontos információ, mielött használnád, tesztelnéd Sajnos úgy tűnik, hogy a Ct2 kvantálás során valami elvész, elromlik a modellben, szinte használhatatlanná válik, az max output tokenek száma drasztikusan leesik, nagyon csonkolja a mondatokat. Még nem tudom hol a határ időben, token számban ahol eklezd csonkolni, de max 10 sec körül vagy inkább alatta. Natív F32-ben szépen dolgozik ahogy a teszteredmények is mutatják, így viszont elveszti a sebességét, ami az értelme lenne. Lehet újra indítom a finomhangolást nativan Float16-on, hogy lássam azzal a modellel mi történik a kvantálás során. (Az original modell is Float16-ban van) # whisper-large-v3-turbo-finetuned-hu This model is a fine-tuned version of [openai/whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) on the custom dataset. It achieves the following results on the evaluation set: - Loss: 0.0287 - Wer: 0.0748 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 32 - total_eval_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:------:| | 0.0574 | 0.1176 | 2000 | 0.0581 | 0.1432 | | 0.0495 | 0.2352 | 4000 | 0.0517 | 0.1283 | | 0.0474 | 0.3528 | 6000 | 0.0479 | 0.1184 | | 0.0454 | 0.4704 | 8000 | 0.0440 | 0.1107 | | 0.0409 | 0.5880 | 10000 | 0.0416 | 0.1024 | | 0.0402 | 0.7056 | 12000 | 0.0419 | 0.1045 | | 0.0377 | 0.8231 | 14000 | 0.0387 | 0.0941 | | 0.0377 | 0.9407 | 16000 | 0.0371 | 0.0950 | | 0.0253 | 1.0583 | 18000 | 0.0360 | 0.0899 | | 0.0244 | 1.1759 | 20000 | 0.0352 | 0.0884 | | 0.0238 | 1.2935 | 22000 | 0.0342 | 0.0884 | | 0.023 | 1.4111 | 24000 | 0.0329 | 0.0851 | | 0.0224 | 1.5287 | 26000 | 0.0320 | 0.0819 | | 0.0212 | 1.6463 | 28000 | 0.0310 | 0.0805 | | 0.0196 | 1.7639 | 30000 | 0.0301 | 0.0778 | | 0.0189 | 1.8815 | 32000 | 0.0292 | 0.0762 | | 0.0193 | 1.9991 | 34000 | 0.0287 | 0.0748 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu118 - Datasets 3.1.0 - Tokenizers 0.21.0