--- language: - multilingual - af - sq - am - ar - hy - as - az - eu - be - bn - bs - bg - my - ca - ceb - zh - co - hr - cs - da - nl - en - eo - et - fi - fr - fy - gl - ka - de - el - gu - ht - ha - haw - he - hi - hmn - hu - is - ig - id - ga - it - ja - jv - kn - kk - km - rw - ko - ku - ky - lo - la - lv - lt - lb - mk - mg - ms - ml - mt - mi - mr - mn - ne - 'no' - ny - or - fa - pl - pt - pa - ro - ru - sm - gd - sr - st - sn - si - sk - sl - so - es - su - sw - sv - tl - tg - ta - tt - te - th - bo - tr - tk - ug - uk - ur - uz - vi - cy - wo - gd - sr - st - sn - si - sk - sl - so - es - su - sw - sv - tl - tg - ta - tt - te - th - bo - tr - tk - ug - uk - ur - gd - sr - st - sn - si - sk - sl - so - es - su - sw - sv - tl - tg - ta - tt - te - th - bo - tr - tk - ug - uk - ur - uz - vi - cy - wo - gd - sr - st - sn - si - sk - sl - so - es - su - sw - sv - tl - tg - ta - tt - te - th - bo - tr - tk - ug - uk - ur - uz - vi - uz - vi - cy - wo - xh - xh - yi - yo - zu pipeline_tag: sentence-similarity tags: - bert - sentence_embedding - multilingual - sartify - sentence-similarity - sentence license: apache-2.0 library_name: sentence-transformers --- # AviLaBSE ## Model description This is a unified model trained over LaBSE by google [LaBSE](https://tfhub.dev/google/LaBSE/2) to add other row resourced language dimensions and then convereted to PyTorch. It can be used to map more than 250 languages to a shared vector space. The pre-training process combines masked language modeling with translation language modeling. The model is useful for getting multilingual sentence embeddings and for bi-text retrieval. - **Model**: [HuggingFace's model hub](https://huggingface.co/sartifyllc/AviLaBSE). - **Paper**: [arXiv](https://arxiv.org/abs/2007.01852). - **Original TF model**: [TensorFlow Hub](https://tfhub.dev/google/LaBSE/2). - **Blog post**: [Google AI Blog](https://ai.googleblog.com/2020/08/language-agnostic-bert-sentence.html). - **Developed by:** [Sartify LLC](https://huggingface.co/sartifyllc/) ## Usage Using the model: ```python import torch from transformers import BertModel, BertTokenizerFast tokenizer = BertTokenizerFast.from_pretrained("sartifyllc/AviLaBSE") model = BertModel.from_pretrained("sartifyllc/AviLaBSE") model = model.eval() english_sentences = [ "dog", "Puppies are nice.", "I enjoy taking long walks along the beach with my dog.", ] english_inputs = tokenizer(english_sentences, return_tensors="pt", padding=True) with torch.no_grad(): english_outputs = model(**english_inputs) ``` To get the sentence embeddings, use the pooler output: ```python english_embeddings = english_outputs.pooler_output ``` Output for other row resourced languages: ```python swahili_sentences = [ "mbwa", "Mbwa ni mzuri.", "Ninafurahia kutembea kwa muda mrefu kando ya pwani na mbwa wangu.", ] zulu_sentences = [ "inja", "Inja iyavuma.", "Ngithanda ukubhema izinyawo ezidlula emanzini nabanye nomfana wami.", ] igbo_sentences = [ "nwa nkịta", "Nwa nkịta dị ọma.", "Achọrọ m gaa n'okirikiri na ụzọ nke oke na mgbidi na nwa nkịta m." ] swahili_inputs = tokenizer(swahili_sentences, return_tensors="pt", padding=True) zulu_inputs = tokenizer(zulu_sentences, return_tensors="pt", padding=True) igbo_inputs=tokenizer(igbo_sentences, return_tensors="pt", padding=True) with torch.no_grad(): swahili_outputs = model(**swahili_inputs) zulu_outputs = model(**zulu_inputs) igbo_outputs =model(**igbo_inputs) swahili_embeddings = swahili_outputs.pooler_output zulu_embeddings = zulu_outputs.pooler_output igbo_embeddings=igbo_outputs.pooler_output ``` For similarity between sentences, an L2-norm is recommended before calculating the similarity: ```python import torch.nn.functional as F def similarity(embeddings_1, embeddings_2): normalized_embeddings_1 = F.normalize(embeddings_1, p=2) normalized_embeddings_2 = F.normalize(embeddings_2, p=2) return torch.matmul( normalized_embeddings_1, normalized_embeddings_2.transpose(0, 1) ) print(similarity(english_embeddings, swahili_embeddings)) print(similarity(english_embeddings, zulu_embeddings)) print(similarity(swahili_embeddings, igbo_embeddings)) ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'}) (3): Normalize() ) ```