--- license: mit library_name: peft tags: - generated_from_trainer base_model: facebook/esm2_t36_3B_UR50D metrics: - precision - recall - accuracy model-index: - name: esm2-t36-3B-lora-16-remote-homology-filtered results: [] --- # esm2-t36-3B-lora-16-remote-homology-filtered This model is a fine-tuned version of [facebook/esm2_t36_3B_UR50D](https://huggingface.co/facebook/esm2_t36_3B_UR50D) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4403 - Precision: 0.7922 - Recall: 0.8139 - F1-score: 0.8029 - Accuracy: 0.7990 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 96 - eval_batch_size: 96 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 192 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1-score | Accuracy | |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:--------:|:--------:| | 0.535 | 0.9992 | 664 | 0.5186 | 0.8002 | 0.6630 | 0.7252 | 0.7472 | | 0.4946 | 2.0 | 1329 | 0.5065 | 0.6945 | 0.8969 | 0.7828 | 0.7496 | | 0.4727 | 2.9992 | 1993 | 0.4592 | 0.7917 | 0.7876 | 0.7897 | 0.7889 | | 0.4439 | 4.0 | 2658 | 0.4471 | 0.8087 | 0.7798 | 0.7940 | 0.7964 | | 0.4234 | 4.9962 | 3320 | 0.4403 | 0.7922 | 0.8139 | 0.8029 | 0.7990 | ### Framework versions - PEFT 0.10.0 - Transformers 4.40.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1