File size: 2,054 Bytes
42f87d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
base_model: GreatCaptainNemo/ProLLaMA
metrics:
- precision
- recall
- accuracy
model-index:
- name: prollama-7b-lora-8-remote-homology-filtered
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# prollama-7b-lora-8-remote-homology-filtered
This model is a fine-tuned version of [GreatCaptainNemo/ProLLaMA](https://huggingface.co/GreatCaptainNemo/ProLLaMA) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4261
- Precision: 0.7980
- Recall: 0.8159
- F1-score: 0.8068
- Accuracy: 0.8042
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1-score | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:--------:|:--------:|
| 0.4947 | 1.0 | 5313 | 0.4742 | 0.7628 | 0.8081 | 0.7848 | 0.7779 |
| 0.4607 | 2.0 | 10626 | 0.4563 | 0.8163 | 0.7291 | 0.7702 | 0.7820 |
| 0.4377 | 3.0 | 15939 | 0.4466 | 0.8094 | 0.7627 | 0.7854 | 0.7910 |
| 0.4164 | 4.0 | 21252 | 0.4280 | 0.7953 | 0.8151 | 0.8051 | 0.8021 |
| 0.403 | 5.0 | 26565 | 0.4261 | 0.7980 | 0.8159 | 0.8068 | 0.8042 |
### Framework versions
- PEFT 0.10.0
- Transformers 4.40.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1 |