File size: 1,630 Bytes
e877250 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
---
tags:
- merge
- mergekit
- kaist-ai/mistral-orpo-beta
- NousResearch/Hermes-2-Pro-Mistral-7B
- mistralai/Mistral-7B-Instruct-v0.2
base_model:
- kaist-ai/mistral-orpo-beta
- NousResearch/Hermes-2-Pro-Mistral-7B
- mistralai/Mistral-7B-Instruct-v0.2
---
# Orpomis-Prime-7B-it
Orpomis-Prime-7B-it is a merge of the following models using [Mergekit](https://github.com/arcee-ai/mergekit):
* [kaist-ai/mistral-orpo-beta](https://huggingface.co/kaist-ai/mistral-orpo-beta)
* [NousResearch/Hermes-2-Pro-Mistral-7B](https://huggingface.co/NousResearch/Hermes-2-Pro-Mistral-7B)
* [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2)
## 🧩 Configuration
```yamlname: Orpomis-Prime-7B-it
models:
- model: kaist-ai/mistral-orpo-beta
- model: NousResearch/Hermes-2-Pro-Mistral-7B
- model: mistralai/Mistral-7B-Instruct-v0.2
merge_method: model_stock
base_model: mistralai/Mistral-7B-Instruct-v0.2
dtype: bfloat16```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "saucam/Orpomis-Prime-7B-it"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
``` |