--- library_name: transformers license: apache-2.0 base_model: openai/whisper-large-v3 tags: - whisper-event - generated_from_trainer datasets: - OUTCOMESAI/medical_n_common_speech_corpus_50_50 metrics: - wer model-index: - name: Whisper Large V3 Common n Medical 50 50 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: OUTCOMESAI/medical_n_common_speech_corpus_50_50 en type: OUTCOMESAI/medical_n_common_speech_corpus_50_50 metrics: - name: Wer type: wer value: 5.218643517767322 --- # Whisper Large V3 Common n Medical 50 50 This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the OUTCOMESAI/medical_n_common_speech_corpus_50_50 en dataset. It achieves the following results on the evaluation set: - Loss: 0.3196 - Wer: 5.2186 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - distributed_type: multi-GPU - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 250 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 5.126 | 0.0969 | 250 | 0.3694 | 5.6601 | | 4.367 | 0.1938 | 500 | 0.3586 | 5.8156 | | 4.1514 | 0.2907 | 750 | 0.3511 | 5.8839 | | 3.962 | 0.3876 | 1000 | 0.3450 | 5.7805 | | 3.9038 | 0.4845 | 1250 | 0.3403 | 6.1746 | | 3.8313 | 0.5814 | 1500 | 0.3359 | 5.9738 | | 3.7778 | 0.6783 | 1750 | 0.3333 | 5.9218 | | 3.7421 | 0.7752 | 2000 | 0.3306 | 6.1327 | | 3.7367 | 0.8721 | 2250 | 0.3281 | 5.6561 | | 3.6878 | 0.9690 | 2500 | 0.3257 | 5.5154 | | 3.6769 | 1.0659 | 2750 | 0.3242 | 5.4803 | | 3.6508 | 1.1628 | 3000 | 0.3235 | 5.4634 | | 3.6292 | 1.2597 | 3250 | 0.3220 | 5.3512 | | 3.6179 | 1.3566 | 3500 | 0.3210 | 5.2254 | | 3.6032 | 1.4535 | 3750 | 0.3206 | 5.2207 | | 3.5922 | 1.5504 | 4000 | 0.3201 | 5.3038 | | 3.5743 | 1.6473 | 4250 | 0.3198 | 5.2633 | | 3.5882 | 1.7442 | 4500 | 0.3198 | 5.2254 | | 3.6021 | 1.8411 | 4750 | 0.3196 | 5.2186 | | 3.5865 | 1.9380 | 5000 | 0.3193 | 5.2213 | ### Framework versions - Transformers 4.48.0.dev0 - Pytorch 2.1.0+cu118 - Datasets 3.2.1.dev0 - Tokenizers 0.21.0