Update README.md
Browse files
README.md
CHANGED
@@ -6,14 +6,71 @@ tags:
|
|
6 |
---
|
7 |
# Whitebox Cartoonizer
|
8 |
|
9 |
-
Whitebox Cartoonizer [1] model in the `SavedModel` format. The model was exported to the SavedModel format using
|
|
|
|
|
10 |
|
11 |
## Inference code
|
12 |
|
13 |
```py
|
14 |
-
|
15 |
-
import
|
|
|
|
|
|
|
|
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
---
|
7 |
# Whitebox Cartoonizer
|
8 |
|
9 |
+
Whitebox Cartoonizer [1] model in the `SavedModel` format. The model was exported to the SavedModel format using
|
10 |
+
[this notebook](https://huggingface.co/sayakpaul/whitebox-cartoonizer/blob/main/export-saved-model.ipynb). Original model
|
11 |
+
repository can be found [here](https://github.com/SystemErrorWang/White-box-Cartoonization).
|
12 |
|
13 |
## Inference code
|
14 |
|
15 |
```py
|
16 |
+
import cv2
|
17 |
+
import numpy as np
|
18 |
+
import requests
|
19 |
+
import tensorflow as tf
|
20 |
+
from huggingface_hub import snapshot_download
|
21 |
+
from PIL import Image
|
22 |
|
23 |
+
|
24 |
+
def resize_crop(image):
|
25 |
+
h, w, c = np.shape(image)
|
26 |
+
if min(h, w) > 720:
|
27 |
+
if h > w:
|
28 |
+
h, w = int(720 * h / w), 720
|
29 |
+
else:
|
30 |
+
h, w = 720, int(720 * w / h)
|
31 |
+
image = cv2.resize(image, (w, h), interpolation=cv2.INTER_AREA)
|
32 |
+
h, w = (h // 8) * 8, (w // 8) * 8
|
33 |
+
image = image[:h, :w, :]
|
34 |
+
return image
|
35 |
+
|
36 |
+
|
37 |
+
def download_image(url):
|
38 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
39 |
+
image = image.convert("RGB")
|
40 |
+
image = np.array(image)
|
41 |
+
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
|
42 |
+
return image
|
43 |
+
|
44 |
+
|
45 |
+
def preprocess_image(image):
|
46 |
+
image = resize_crop(image)
|
47 |
+
image = image.astype(np.float32) / 127.5 - 1
|
48 |
+
image = np.expand_dims(image, axis=0)
|
49 |
+
image = tf.constant(image)
|
50 |
+
return image
|
51 |
+
|
52 |
+
|
53 |
+
# Load the model and extract concrete function.
|
54 |
+
model_path = snapshot_download("sayakpaul/whitebox-cartoonizer")
|
55 |
+
loaded_model = tf.saved_model.load(model_path)
|
56 |
+
concrete_func = loaded_model.signatures["serving_default"]
|
57 |
+
|
58 |
+
# Download and preprocess image.
|
59 |
+
image_url = "https://huggingface.co/spaces/sayakpaul/cartoonizer-demo-onnx/resolve/main/mountain.jpeg"
|
60 |
+
image = download_image(image_url)
|
61 |
+
preprocessed_image = preprocess_image(image)
|
62 |
+
|
63 |
+
# Run inference.
|
64 |
+
result = concrete_func(preprocessed_image)["final_output:0"]
|
65 |
+
|
66 |
+
# Post-process the result and serialize it.
|
67 |
+
output = (result[0].numpy() + 1.0) * 127.5
|
68 |
+
output = np.clip(output, 0, 255).astype(np.uint8)
|
69 |
+
output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB)
|
70 |
+
output_image = Image.fromarray(output)
|
71 |
+
output_image.save("result.png")
|
72 |
+
```
|
73 |
+
|
74 |
+
## References
|
75 |
+
|
76 |
+
[1] Learning to Cartoonize Using White-box Cartoon Representations; Xinrui Wang and Jinze Yu; CVPR 2020.
|