Initial commit
Browse files- .gitattributes +2 -0
- README.md +70 -0
- a2c-HopperBulletEnv-v0.zip +3 -0
- a2c-HopperBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-HopperBulletEnv-v0/data +106 -0
- a2c-HopperBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-HopperBulletEnv-v0/policy.pth +3 -0
- a2c-HopperBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-HopperBulletEnv-v0/system_info.txt +7 -0
- args.yml +59 -0
- config.yml +33 -0
- env_kwargs.yml +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- train_eval_metrics.zip +3 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -25,3 +25,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
29 |
+
vec_normalize.pkl filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- HopperBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 709.34 +/- 213.24
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: HopperBulletEnv-v0
|
20 |
+
type: HopperBulletEnv-v0
|
21 |
+
---
|
22 |
+
|
23 |
+
# **A2C** Agent playing **HopperBulletEnv-v0**
|
24 |
+
This is a trained model of a **A2C** agent playing **HopperBulletEnv-v0**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
|
26 |
+
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
|
27 |
+
|
28 |
+
The RL Zoo is a training framework for Stable Baselines3
|
29 |
+
reinforcement learning agents,
|
30 |
+
with hyperparameter optimization and pre-trained agents included.
|
31 |
+
|
32 |
+
## Usage (with SB3 RL Zoo)
|
33 |
+
|
34 |
+
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
|
35 |
+
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
|
36 |
+
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
|
37 |
+
|
38 |
+
```
|
39 |
+
# Download model and save it into the logs/ folder
|
40 |
+
python -m utils.load_from_hub --algo a2c --env HopperBulletEnv-v0 -orga sb3 -f logs/
|
41 |
+
python enjoy.py --algo a2c --env HopperBulletEnv-v0 -f logs/
|
42 |
+
```
|
43 |
+
|
44 |
+
## Training (with the RL Zoo)
|
45 |
+
```
|
46 |
+
python train.py --algo a2c --env HopperBulletEnv-v0 -f logs/
|
47 |
+
# Upload the model and generate video (when possible)
|
48 |
+
python -m utils.push_to_hub --algo a2c --env HopperBulletEnv-v0 -f logs/ -orga sb3
|
49 |
+
```
|
50 |
+
|
51 |
+
## Hyperparameters
|
52 |
+
```python
|
53 |
+
OrderedDict([('ent_coef', 0.0),
|
54 |
+
('env_wrapper', 'sb3_contrib.common.wrappers.TimeFeatureWrapper'),
|
55 |
+
('gae_lambda', 0.9),
|
56 |
+
('gamma', 0.99),
|
57 |
+
('learning_rate', 'lin_0.00096'),
|
58 |
+
('max_grad_norm', 0.5),
|
59 |
+
('n_envs', 4),
|
60 |
+
('n_steps', 8),
|
61 |
+
('n_timesteps', 2000000.0),
|
62 |
+
('normalize', True),
|
63 |
+
('normalize_advantage', False),
|
64 |
+
('policy', 'MlpPolicy'),
|
65 |
+
('policy_kwargs', 'dict(log_std_init=-2, ortho_init=False)'),
|
66 |
+
('use_rms_prop', True),
|
67 |
+
('use_sde', True),
|
68 |
+
('vf_coef', 0.4),
|
69 |
+
('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})])
|
70 |
+
```
|
a2c-HopperBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:961dfc78d8ffef06e91a7c0210a68119566c02b26e940bbb680fb821c31b2e00
|
3 |
+
size 115292
|
a2c-HopperBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.1a8
|
a2c-HopperBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f70d2699950>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f70d26999e0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f70d2699a70>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f70d2699b00>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f70d2699b90>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f70d2699c20>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f70d2699cb0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f70d2699d40>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f70d2699dd0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f70d2699e60>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f70d2699ef0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f70d26eb840>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {
|
23 |
+
":type:": "<class 'dict'>",
|
24 |
+
":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
25 |
+
"log_std_init": -2,
|
26 |
+
"ortho_init": false,
|
27 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
28 |
+
"optimizer_kwargs": {
|
29 |
+
"alpha": 0.99,
|
30 |
+
"eps": 1e-05,
|
31 |
+
"weight_decay": 0
|
32 |
+
}
|
33 |
+
},
|
34 |
+
"observation_space": {
|
35 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
36 |
+
":serialized:": "gASVGQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgLiUNAAACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AAAAAJR0lGKMBGhpZ2iUaBFoE0sAhZRoFYeUUpQoSwFLEIWUaAuJQ0AAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEWgTSwCFlGgVh5RSlChLAUsQhZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAAGUdJRijA1ib3VuZGVkX2Fib3ZllGgRaBNLAIWUaBWHlFKUKEsBSxCFlGgpiUMQAAAAAAAAAAAAAAAAAAAAAZR0lGKMCl9ucF9yYW5kb22UTowGX3NoYXBllEsQhZR1Yi4=",
|
37 |
+
"dtype": "float32",
|
38 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf 0.]",
|
39 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf 1.]",
|
40 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False True]",
|
41 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False True]",
|
42 |
+
"_np_random": null,
|
43 |
+
"_shape": [
|
44 |
+
16
|
45 |
+
]
|
46 |
+
},
|
47 |
+
"action_space": {
|
48 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
49 |
+
":serialized:": "gASVJwwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwOFlGgLiUMMAACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEWgTSwCFlGgVh5RSlChLAUsDhZRoC4lDDAAAgD8AAIA/AACAP5R0lGKMDWJvdW5kZWRfYmVsb3eUaBFoE0sAhZRoFYeUUpQoSwFLA4WUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQwMBAQGUdJRijA1ib3VuZGVkX2Fib3ZllGgRaBNLAIWUaBWHlFKUKEsBSwOFlGgpiUMDAQEBlHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaDmMBXN0YXRllH2UKIwDa2V5lGgRaBNLAIWUaBWHlFKUKEsBTXAChZRoCIwCdTSUiYiHlFKUKEsDaAxOTk5K/////0r/////SwB0lGKJQsAJAAAAAACAU8KznIcDtZNy7Ktb6Oay8s+2gdrVBu9hoTFNoGu1zNkT5hifdJx5L8ilG4DEeQFJng9D5F3gGJOSE1XM1EopZNIIlb400J5EcnoD8K2/CnObez7pYLEG2nUDRQtufdYWausENGaDt/P1pS9p70JjQ7Vc98J3UsxGRDctCIlu0I6ud/sYtoBPe575TzLsEti5jl6FqRnKrj12LWcrQoCexe7HH/UiAV1LzyQPzBlSZERXmHCdCvUSF7XpWt47xP9BzzqxX7aH3TPYWImqos1/ez/JlLdsD0MfMZl9G2CQq7cHHRlM3sj7jroA9c+pGt4l/iAGpRb80HbjwU71ykPTAVp531BXrc2qmIU6z9Fh4TAPx7fZ1kVF+L1Irlou+4Ckky7Ys59nB7KkciTI+N5jlb62ybZt0+ZWgIA6LKLvdx/mTQtB4k1aplT/C7L9/ybKCFn2quN/7YlIkxoH1U0xdabG6rgOrR+SHMmvUwvtKB+19Ibb07mSgVQyjNAvnyADPJf3pkxylZtn7f/OVpWEaWfl6BcLwy0grrEgUK+H+8P8XWMuBginXgwzn3sy4+ZOlr45op6TtuqX0Knz/SySGDlBIK8JqKObzB6fGt+ovJHEM8KlL4veKwkLkuuMWBaex3FBdWskry5qhslxMgnk2thh8DaXmAfbuI8j0SqHMW1kleITi9ekfXx/eSi5hX1GjA/M62Zixuay1H8zH9VjsTRcGacyJ0vh1hNReDFoNsXFbLfLqaIvbLDQjY7T289ZXsupvAxu2GVTbqWst+ckPPzwH7vLikULC+weAKwxarqm+ugAXgyz774meHOsvQYuu18nvrrunjZWDvwaKuYohEwUfSnpotE9XhX99yUTc8sGPQidTfXkzm/t8MWP8it4l4VSEgDLn8GW8t2DAh8EwFa/KOGoZEGjYqZ2IMA70E+F2LqgaZlQLFMONTIx3yuN5F2e1MT4v2wdBRK9R+lGMpxIiNldyOwwxLDBTRDMhd7APidmDwQBnvaIecKFa95btwHkRBEUT5g++/I0DDg685EX4OMO2YtTPqM3PQluS4puEhAQRVukNGSh4gYDgcBPKZl4ThNf+G+E7El9fmWJcP39Sifw6Mn+GEisM1RhHY05XZHUv5W4r8kD2jSLMY+IIL2+LtQrW7it7y28+sEicLoEfYOky9ZJF6l0fR+sXEawf+REH9LvtRJ4yzfxr7KisNpr1axv1ae5CDXS+XTzuOG/BJnHvt8arnY1XWH9SdkCOeok6MI8GBCtjTCxJ5JbpI5J0i0A66mJaRW9LMfP6Cil3/cVRQ9uN2KTtV3o7rJwY4XCnj7DJmqrUwofDDl7Ek0PoN7w0Hh8YHOy8qhPw7V8ALdjZn7eYtjCQIldQvHbM1I73RtCLQvQGFMXUCJ022pGRqTvZX5XWSizqbgX6TJmI6LDF9wcpYealB7cDwelfqdpzHRmyjRbIX9b+w4uj//aDRgP2SgiOAq/D/9/0SbgK/E0FQyclhNVAkbKwXhAxKGczpvJow0mFFUAt/5fT5KAsmQTAt8p0FsrGMDTfk4RzZgqZSm+ihVRS371Tx3twpGA1goo/AIfJh8slJC3hkR1OGCN7LAPGCwbM9rHlKSU4uuhJiff196h9q1kPMld6989MfKLVkvCl7ofCRurPUW46ceJKE951sQD1v8cK0HK1JmuBTCXAelCUCIFNLGk3tMXNVmuuFF3o3xb4V4T1IAYIfBdyEVHhIIZOE/JEY79daQw8njYEtQ6YwZ6kNCBYfrjq2OglITcRdwDmINL42ro6HnbWgLZQ8Ce/EiPVBtWHwhvGUHK1FNONzRzXgT1zKEg+WAigeuK4QVIxdITM4YvUyYvpQJuJd+xGD1no7BYIKXdV4aDlsRnWSMmS+zTyTvC0+TgBMCNpMvdChjaB/XTrMVsm0vgPmCYswn067MTYWfm5oCqqmNciqoRfFL2O2mxFT1VMcKDrxHBdBUhSG5UmAerx86KAEytbsCbn6OOj8Y02VwVynzXd0WJfLioeGMZISM1eneWfTc1mQ6CpdDxJqUmU86/KsBL3Bb0S2NAqFysFJZKxDwLej8xz+xH8IxEHzlkiiNH+2IIq0663FAwi6wg6dgcryDqQ+lNDwn898nylrcYShigDrtrFBNezKx3ZjpkPCnPUeQB4hJUrYCUJy5CyytC/x1UsByKez/aSNEWnlWnzYdJf2PoKL0YfmaR3KpXzi9ax3BHPgk1cdmgdVkqevFJ0DUdTBFQj/mhaKqcaT0rKJLgy/11AhWW4nX7+kAdgR0b1iAseI0TbMDtohBuqqUZfqMfUKsdI8v2aeUd0+IqOjPBFe7TZRC7OUYmf789SRTpw9gst4tzx7tLap8JnFt2keKhqd3vBgqpvlsxvx0DcPC+bo/qIldKiAn5D7TPjeWLzJ1gmpk1mVKOyWOv/ZzlRTfe8yEsMsRcgdPxbOuxLjlOwo1uFh9NjHoOz/xbnI62I49ZzT59GUCNtAL74UqjlRoyXZ5ELEjhTn+F5fYfEkY2TnSsgKO4Wwb/xD41S4mBL7LcUyF76ybV7Yx0L6V2QGoSfyhHFqMQJs/haLPPW18mWJb/UDl90ZN9TEzcdXvZsmCeqzCagC6YDHp3fop+5nAQSnT/Byt2j7z+6cnl/aZh6oKs5xrEMmuzpLFbXNVof9hNmX5E0DQ2M8uBqqeW95p6z8ySnOxURAO28oYWsbVyeYaNlWLZrOtIMZDRjjbecSSwMLlrBhw4mZVht4DgOQxI1+P7sPHZLMf89U+5ctf1rD0r1AXgyXjzOxKvCxWMhrz6Ah19+zal/bAIpw+0V7Pq85PRQO4UeScmMwODR8jcOfILuMmo7xXhemY/JqtOncklEaGapMeGlkiefvQkx9L5EWvLn6stI4zRP4pZXx9iOz17IKJmKOVHgCIAOiheb0bwkjNkItlfYO3LzeLLPuBDNLFg7tQu5NPWy28a4nBsE/gsyEteRvF2ECYFIOJg06dzc77IWw7o+z1Q5APxLg9uvyFniYWNuJyk7rflLCmYcg1gN657CWff8YfPr0ukKOamco94X1nFdyroxHiQlRXaP91DOqMueI1pCasyRQt0jtbWwxdEVyzP3GzUZXBWqa0xXCzwe29cxg2aiwKuuAAVfaCE/Pt1cJXq8wvliF81sMDPMbowd9+uyWuExq/e+2W3wWeV3hVofoiEySjBrJPWVJW9++UocJbC0ppNw5mtHktkZqUk6kVtUgVQ4Cj4udj/bluZzcqWjIvOCJO52M+xcQY808Ei8T/lwwS9TguuzQ3e0KR7hptgNcX1/XhCvAuUdJRijANwb3OUTXACdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YowGX3NoYXBllEsDhZR1Yi4=",
|
50 |
+
"dtype": "float32",
|
51 |
+
"low": "[-1. -1. -1.]",
|
52 |
+
"high": "[1. 1. 1.]",
|
53 |
+
"bounded_below": "[ True True True]",
|
54 |
+
"bounded_above": "[ True True True]",
|
55 |
+
"_np_random": "RandomState(MT19937)",
|
56 |
+
"_shape": [
|
57 |
+
3
|
58 |
+
]
|
59 |
+
},
|
60 |
+
"n_envs": 4,
|
61 |
+
"num_timesteps": 2000000,
|
62 |
+
"_total_timesteps": 2000000,
|
63 |
+
"_num_timesteps_at_start": 0,
|
64 |
+
"seed": 0,
|
65 |
+
"action_noise": null,
|
66 |
+
"start_time": 1614621275.3394907,
|
67 |
+
"learning_rate": {
|
68 |
+
":type:": "<class 'function'>",
|
69 |
+
":serialized:": "gASVngMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsCSxNDCHwAiAAUAFMAlIyECiAgICAgICAgUHJvZ3Jlc3Mgd2lsbCBkZWNyZWFzZSBmcm9tIDEgKGJlZ2lubmluZykgdG8gMAogICAgICAgIDpwYXJhbSBwcm9ncmVzc19yZW1haW5pbmc6IChmbG9hdCkKICAgICAgICA6cmV0dXJuOiAoZmxvYXQpCiAgICAgICAglIWUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjFovdm9sdW1lL1VTRVJTVE9SRS9yYWZmX2FuL3Byb2plY3RzL2V4cGVyaW1lbnRzL3JlbGVhc2UxLjAvcmwtYmFzZWxpbmVzMy16b28vdXRpbHMvdXRpbHMucHmUjARmdW5jlEv+QwIABpSMDWluaXRpYWxfdmFsdWWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjAV1dGlsc5SMCF9fbmFtZV9flIwLdXRpbHMudXRpbHOUjAhfX2ZpbGVfX5SMWi92b2x1bWUvVVNFUlNUT1JFL3JhZmZfYW4vcHJvamVjdHMvZXhwZXJpbWVudHMvcmVsZWFzZTEuMC9ybC1iYXNlbGluZXMzLXpvby91dGlscy91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGghfZR9lChoGGgPjAxfX3F1YWxuYW1lX1+UjB1saW5lYXJfc2NoZWR1bGUuPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lCiMEnByb2dyZXNzX3JlbWFpbmluZ5SMCGJ1aWx0aW5zlIwFZmxvYXSUk5SMBnJldHVybpRoLnWMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flGgKjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
70 |
+
},
|
71 |
+
"tensorboard_log": null,
|
72 |
+
"lr_schedule": {
|
73 |
+
":type:": "<class 'function'>",
|
74 |
+
":serialized:": "gASVngMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsCSxNDCHwAiAAUAFMAlIyECiAgICAgICAgUHJvZ3Jlc3Mgd2lsbCBkZWNyZWFzZSBmcm9tIDEgKGJlZ2lubmluZykgdG8gMAogICAgICAgIDpwYXJhbSBwcm9ncmVzc19yZW1haW5pbmc6IChmbG9hdCkKICAgICAgICA6cmV0dXJuOiAoZmxvYXQpCiAgICAgICAglIWUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjFovdm9sdW1lL1VTRVJTVE9SRS9yYWZmX2FuL3Byb2plY3RzL2V4cGVyaW1lbnRzL3JlbGVhc2UxLjAvcmwtYmFzZWxpbmVzMy16b28vdXRpbHMvdXRpbHMucHmUjARmdW5jlEv+QwIABpSMDWluaXRpYWxfdmFsdWWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjAV1dGlsc5SMCF9fbmFtZV9flIwLdXRpbHMudXRpbHOUjAhfX2ZpbGVfX5SMWi92b2x1bWUvVVNFUlNUT1JFL3JhZmZfYW4vcHJvamVjdHMvZXhwZXJpbWVudHMvcmVsZWFzZTEuMC9ybC1iYXNlbGluZXMzLXpvby91dGlscy91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGghfZR9lChoGGgPjAxfX3F1YWxuYW1lX1+UjB1saW5lYXJfc2NoZWR1bGUuPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lCiMEnByb2dyZXNzX3JlbWFpbmluZ5SMCGJ1aWx0aW5zlIwFZmxvYXSUk5SMBnJldHVybpRoLnWMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flGgKjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
75 |
+
},
|
76 |
+
"_last_obs": null,
|
77 |
+
"_last_episode_starts": null,
|
78 |
+
"_last_original_obs": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gASVjQEAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLEIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAQAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIC5eG8/AAAAADx6dz8AAAAApFpUPQAAAAAAAAAAAACAPwAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAPjN8PwAAAADbxIc/AAAAALp+qz0AAAAAAAAAAAAAgD8AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgNcafT8AAAAAP8eGPwAAAADJlEK9AAAAAAAAAAAAAIA/AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDQ/H4/AAAAADOxhD8AAAAAfsR6OgAAAAAAAAAAAACAP5R0lGIu"
|
81 |
+
},
|
82 |
+
"_episode_num": 0,
|
83 |
+
"use_sde": true,
|
84 |
+
"sde_sample_freq": -1,
|
85 |
+
"_current_progress_remaining": 0.0,
|
86 |
+
"ep_info_buffer": {
|
87 |
+
":type:": "<class 'collections.deque'>",
|
88 |
+
":serialized:": "gASVEAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGM2ZVfeDWeMAWyUS1qMAXSUR0C3C2kliSaFdX2UKGgGR0B1T1bqyGBXaAdL12gIR0C3C4F4LThHdX2UKGgGR0B/icGyHEdeaAdNdgFoCEdAtwuJy+6AfHV9lChoBkdAdZRIEbHZK2gHS8poCEdAtw0JR3u/lHV9lChoBkdAZBFb9qDbrWgHS2doCEdAtw3SjesPrnV9lChoBkdAhOa3f642CWgHTfABaAhHQLcOwLM9r451fZQoaAZHQIG0USM98qpoB02xAWgIR0C3DtMurZJ1dX2UKGgGR0Bq4c1l5GBnaAdLe2gIR0C3D7DBZZB+dX2UKGgGR0CCoy50bLlnaAdNfAFoCEdAtxC1Xo1UEXV9lChoBkdAkFK2AkLQX2gHTcACaAhHQLcQw3Ov+wV1fZQoaAZHQHLv9/BnBcloB0ugaAhHQLcQ6nQ6ZIB1fZQoaAZHQG0oGMGX5WRoB0uMaAhHQLcZn7mMfih1fZQoaAZHQIX7voX9BKNoB02xAWgIR0C3Gca/VRUFdX2UKGgGR0Bt3ATAWSEEaAdLkmgIR0C3GuLgXMyKdX2UKGgGR0BiEZRjz7MxaAdLTmgIR0C3G3sJQcghdX2UKGgGR0CG7RcpsoDxaAdNyQFoCEdAtxvjabnX/nV9lChoBkdAZQV8D0UXYWgHS2ZoCEdAtxxAqYqoZXV9lChoBkdAceIL3K0UoWgHS8BoCEdAtx1ZYaHbh3V9lChoBkdAfDpnE2pAEGgHTS0BaAhHQLceij6N2kl1fZQoaAZHQJcuql3yI55oB03oA2gIR0C3H/TxoZhsdX2UKGgGR0CSqLxCY1HfaAdNRwNoCEdAtyAAztTkyXV9lChoBkdAd+cCT2WY4WgHTQkBaAhHQLciAsP8Q7N1fZQoaAZHQIMFhSHdoFpoB03wAWgIR0C3Ik6MBIWhdX2UKGgGR0Buuh2yLQ5WaAdLkWgIR0C3Ix1ev6j4dX2UKGgGR0BpUHuiN83NaAdLhWgIR0C3I1HhGYrsdX2UKGgGR0BhfIJ9iMHbaAdLVmgIR0C3I8StV7x/dX2UKGgGR0CJJ9O6/ZdwaAdNGAJoCEdAtyQLhXKbKHV9lChoBkdAk+e27Wd3CGgHTaUDaAhHQLckdD3/PxB1fZQoaAZHQHH/VQuVX3hoB0vBaAhHQLclhAvL5h11fZQoaAZHQHjgNkz41xdoB00sAWgIR0C3JhMYVIqcdX2UKGgGR0CDGn/+85CGaAdNigFoCEdAtyZWHYYixHV9lChoBkdAcjTwNsnAqWgHS7doCEdAtye54KQaJnV9lChoBkdAZYAQL/jsEGgHS2FoCEdAtyh3CBPKuHV9lChoBkdAgNPBltj0+WgHTUgBaAhHQLcokXAdn011fZQoaAZHQGhRiUHIIWxoB0tnaAhHQLcpXfFrEcd1fZQoaAZHQG6HJTVDrqtoB0uaaAhHQLcqi2fkFOh1fZQoaAZHQI6CNFQVKwpoB02rAmgIR0C3Kr1otcv/dX2UKGgGR0CO2thzeXRgaAdNRQNoCEdAtyrZdHDrJXV9lChoBkdAXx8vwmVqvmgHS0loCEdAtysaCEpRXXV9lChoBkdAc6XhlDneSGgHS8poCEdAtzQQvwmVq3V9lChoBkdAiHUyon8baWgHTToCaAhHQLc0nT1CgK51fZQoaAZHQGgN2TPjXFtoB0twaAhHQLc064c3l0Z1fZQoaAZHQICZrvTgEU1oB01PAWgIR0C3NXJR8+ibdX2UKGgGR0BmlRbMX7+DaAdLbWgIR0C3NcGsmv4edX2UKGgGR0CKOc/FirksaAdNJgJoCEdAtzbSJ79hqnV9lChoBkdAcvBHy3CsO2gHS8JoCEdAtzbrdAPd23V9lChoBkdAfQevWYnfEWgHTT4BaAhHQLc3Cjo6jnF1fZQoaAZHQGjBBZ6lchVoB0ttaAhHQLc3qC2MKkV1fZQoaAZHQHrZH0K7ZnNoB00MAWgIR0C3N8rFCLMtdX2UKGgGR0Bk80rsjVx0aAdLfGgIR0C3OL5Oi35OdX2UKGgGR0ByZWLpA2Q5aAdLn2gIR0C3ON8Uh3aBdX2UKGgGR0BOpml67dzoaAdLJWgIR0C3OShZ6lchdX2UKGgGR0Bu1Vz8xbjcaAdLlWgIR0C3OeA00m+kdX2UKGgGR0CHfB/HYHxCaAdN+AFoCEdAtzrh41P3z3V9lChoBkdAdmOGA08/2WgHS+NoCEdAtzriz0HyE3V9lChoBkdAeoSnjQzDXWgHTSEBaAhHQLc8EptJnQJ1fZQoaAZHQHBrOaOPvKFoB0uYaAhHQLc9Or92ovV1fZQoaAZHQIKZPBguyu9oB01yAWgIR0C3PbLEgntwdX2UKGgGR0CERmWCVbA2aAdN2AFoCEdAtz55rJr+HnV9lChoBkdAlYb/8l5WzWgHTegDaAhHQLc+id43WFx1fZQoaAZHQFu+Jaq0dBBoB0s+aAhHQLc+8+9alk91fZQoaAZHQHCdifDk2gpoB0vKaAhHQLc/POKfnOl1fZQoaAZHQHLolPznRsxoB0uraAhHQLdAP0hvBJt1fZQoaAZHQHYueuJUHY9oB0vraAhHQLdAUqhlDnh1fZQoaAZHQHiV8Udq+JxoB0vgaAhHQLdA8JIUahp1fZQoaAZHQIMXqJ40Mw1oB00GAmgIR0C3QS2ALApKdX2UKGgGR0BpcGuLaVUuaAdLcmgIR0C3QdExh2GJdX2UKGgGR0B9Q6CPIXCTaAdNXgFoCEdAt0L/hegL7XV9lChoBkdAf3raF23az2gHTVQBaAhHQLdDxpB5X2d1fZQoaAZHQFuzTAWSEDhoB0tCaAhHQLdER0ngHeJ1fZQoaAZHQH3W0nogV45oB02eAWgIR0C3RPfeP7vYdX2UKGgGR0BtTuygPEsKaAdLmGgIR0C3RW+IVM24dX2UKGgGR0BR06T0QK8daAdLK2gIR0C3RcLH6uW9dX2UKGgGR0BzmoTVUdaMaAdLvmgIR0C3Tixguyu7dX2UKGgGR0CTs2FQl8gIaAdN6ANoCEdAt07V/c32mHV9lChoBkdAiAllQ2uPm2gHTSECaAhHQLdQFj0+TvB1fZQoaAZHQHIhfgNwzchoB0umaAhHQLdQGYIjW091fZQoaAZHQJQ8rRXwLE1oB01yA2gIR0C3UK0nCwbEdX2UKGgGR0BrRlZ/0/W2aAdLhGgIR0C3URgfyPMjdX2UKGgGR0B0Bzh60IC2aAdLuWgIR0C3UYPv4M4MdX2UKGgGR0CL1Jvy9VWCaAdNfQJoCEdAt1MIgpz90nV9lChoBkdAe0W0OEug6GgHTSoBaAhHQLdTyYMvysl1fZQoaAZHQGjdGReTmnxoB0t3aAhHQLdT8bpeNT91fZQoaAZHQH12ZDzAeq9oB01dAWgIR0C3VndKZlWfdX2UKGgGR0CSsiuX/o7naAdNQgNoCEdAt1cP889wFXV9lChoBkdAh8N/EXLvC2gHTd0BaAhHQLdXlmukk8l1fZQoaAZHQHG0thZyMk1oB0ubaAhHQLdXpCHymQ91fZQoaAZHQHGoHenAIppoB0uqaAhHQLdYWwnYxtZ1fZQoaAZHQG1zdwNsnAtoB0uLaAhHQLdYslBQemx1fZQoaAZHQJI27I1cdHVoB03oA2gIR0C3WLvIwM6SdX2UKGgGR0Bj5NopQUHqaAdLZ2gIR0C3WYUnTiKjdX2UKGgGR0Bg/uT7l7tzaAdLUGgIR0C3WiHY150KdX2UKGgGR0B7y+8wpON6aAdNUgFoCEdAt1oqR1X/53V9lChoBkdAe80TjvNNamgHTWIBaAhHQLdbDi4J/od1fZQoaAZHQGS4HOSntOVoB0tiaAhHQLdbzPrv9cd1fZQoaAZHQIFpgHJLdvdoB01hAWgIR0C3XnnvUjLTdX2UKGgGR0CKPY4pc5bRaAdNfQJoCEdAt176GZeAu3V9lChoBkdAkxZ0hvBJqmgHTWoDaAhHQLdfWrksBhh1fZQoaAZHQGE5Dg62fChoB0tRaAhHQLdfl987ZFp1fZQoaAZHQI63klu3trtoB03mAmgIR0C3X877oB7vdWUu"
|
89 |
+
},
|
90 |
+
"ep_success_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
93 |
+
},
|
94 |
+
"_n_updates": 62500,
|
95 |
+
"n_steps": 8,
|
96 |
+
"gamma": 0.99,
|
97 |
+
"gae_lambda": 0.9,
|
98 |
+
"ent_coef": 0.0,
|
99 |
+
"vf_coef": 0.4,
|
100 |
+
"max_grad_norm": 0.5,
|
101 |
+
"normalize_advantage": false,
|
102 |
+
"_last_dones": {
|
103 |
+
":type:": "<class 'numpy.ndarray'>",
|
104 |
+
":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="
|
105 |
+
}
|
106 |
+
}
|
a2c-HopperBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eb63027c8c524ae55834326ba3492732346dafcc044f1a8719903f13a581fcf7
|
3 |
+
size 47422
|
a2c-HopperBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5c9c521b9ea562778933b08a8fb1f0ff9a13aeec49a62f53d5cbb702cd2fcb69
|
3 |
+
size 48062
|
a2c-HopperBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-HopperBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.13.0-44-generic-x86_64-with-debian-bullseye-sid #49~20.04.1-Ubuntu SMP Wed May 18 18:44:28 UTC 2022
|
2 |
+
Python: 3.7.10
|
3 |
+
Stable-Baselines3: 1.5.1a8
|
4 |
+
PyTorch: 1.11.0
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.2
|
7 |
+
Gym: 0.21.0
|
args.yml
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - algo
|
3 |
+
- a2c
|
4 |
+
- - env
|
5 |
+
- HopperBulletEnv-v0
|
6 |
+
- - env_kwargs
|
7 |
+
- null
|
8 |
+
- - eval_episodes
|
9 |
+
- 10
|
10 |
+
- - eval_freq
|
11 |
+
- 10000
|
12 |
+
- - gym_packages
|
13 |
+
- []
|
14 |
+
- - hyperparams
|
15 |
+
- null
|
16 |
+
- - log_folder
|
17 |
+
- rl-trained-agents/
|
18 |
+
- - log_interval
|
19 |
+
- -1
|
20 |
+
- - n_evaluations
|
21 |
+
- 20
|
22 |
+
- - n_jobs
|
23 |
+
- 1
|
24 |
+
- - n_startup_trials
|
25 |
+
- 10
|
26 |
+
- - n_timesteps
|
27 |
+
- -1
|
28 |
+
- - n_trials
|
29 |
+
- 10
|
30 |
+
- - num_threads
|
31 |
+
- -1
|
32 |
+
- - optimize_hyperparameters
|
33 |
+
- false
|
34 |
+
- - pruner
|
35 |
+
- median
|
36 |
+
- - sampler
|
37 |
+
- tpe
|
38 |
+
- - save_freq
|
39 |
+
- -1
|
40 |
+
- - save_replay_buffer
|
41 |
+
- false
|
42 |
+
- - seed
|
43 |
+
- 3332077129
|
44 |
+
- - storage
|
45 |
+
- null
|
46 |
+
- - study_name
|
47 |
+
- null
|
48 |
+
- - tensorboard_log
|
49 |
+
- ''
|
50 |
+
- - trained_agent
|
51 |
+
- ''
|
52 |
+
- - truncate_last_trajectory
|
53 |
+
- true
|
54 |
+
- - uuid
|
55 |
+
- true
|
56 |
+
- - vec_env
|
57 |
+
- dummy
|
58 |
+
- - verbose
|
59 |
+
- 1
|
config.yml
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - ent_coef
|
3 |
+
- 0.0
|
4 |
+
- - env_wrapper
|
5 |
+
- sb3_contrib.common.wrappers.TimeFeatureWrapper
|
6 |
+
- - gae_lambda
|
7 |
+
- 0.9
|
8 |
+
- - gamma
|
9 |
+
- 0.99
|
10 |
+
- - learning_rate
|
11 |
+
- lin_0.00096
|
12 |
+
- - max_grad_norm
|
13 |
+
- 0.5
|
14 |
+
- - n_envs
|
15 |
+
- 4
|
16 |
+
- - n_steps
|
17 |
+
- 8
|
18 |
+
- - n_timesteps
|
19 |
+
- 2000000.0
|
20 |
+
- - normalize
|
21 |
+
- true
|
22 |
+
- - normalize_advantage
|
23 |
+
- false
|
24 |
+
- - policy
|
25 |
+
- MlpPolicy
|
26 |
+
- - policy_kwargs
|
27 |
+
- dict(log_std_init=-2, ortho_init=False)
|
28 |
+
- - use_rms_prop
|
29 |
+
- true
|
30 |
+
- - use_sde
|
31 |
+
- true
|
32 |
+
- - vf_coef
|
33 |
+
- 0.4
|
env_kwargs.yml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5fdd0101e207c517d07c35c922f6524101cdd62e87b5efd1be30db569e6f4a2d
|
3 |
+
size 939193
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 709.3425927999999, "std_reward": 213.23864118868931, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-06-02T17:27:09.731548"}
|
train_eval_metrics.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8ff73875cebd26d55f166d3bd4029b54a0620fafe864a7f446dbdef898ed9198
|
3 |
+
size 185950
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d19558c9875bbbb2562cdf00bde44d2ec5fe0bd3beb61290a6d89c8d694249f8
|
3 |
+
size 4950
|