--- library_name: stable-baselines3 tags: - HopperBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - metrics: - type: mean_reward value: 709.34 +/- 213.24 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: HopperBulletEnv-v0 type: HopperBulletEnv-v0 --- # **A2C** Agent playing **HopperBulletEnv-v0** This is a trained model of a **A2C** agent playing **HopperBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo
SB3: https://github.com/DLR-RM/stable-baselines3
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo a2c --env HopperBulletEnv-v0 -orga sb3 -f logs/ python enjoy.py --algo a2c --env HopperBulletEnv-v0 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo a2c --env HopperBulletEnv-v0 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo a2c --env HopperBulletEnv-v0 -f logs/ -orga sb3 ``` ## Hyperparameters ```python OrderedDict([('ent_coef', 0.0), ('env_wrapper', 'sb3_contrib.common.wrappers.TimeFeatureWrapper'), ('gae_lambda', 0.9), ('gamma', 0.99), ('learning_rate', 'lin_0.00096'), ('max_grad_norm', 0.5), ('n_envs', 4), ('n_steps', 8), ('n_timesteps', 2000000.0), ('normalize', True), ('normalize_advantage', False), ('policy', 'MlpPolicy'), ('policy_kwargs', 'dict(log_std_init=-2, ortho_init=False)'), ('use_rms_prop', True), ('use_sde', True), ('vf_coef', 0.4), ('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})]) ```