araffin commited on
Commit
c4e988c
·
verified ·
1 Parent(s): 740c5a9

Initial Commit

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - MountainCar-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: -110.60 +/- 19.42
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: MountainCar-v0
20
+ type: MountainCar-v0
21
+ ---
22
+
23
+ # **A2C** Agent playing **MountainCar-v0**
24
+ This is a trained model of a **A2C** agent playing **MountainCar-v0**
25
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
26
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
27
+
28
+ The RL Zoo is a training framework for Stable Baselines3
29
+ reinforcement learning agents,
30
+ with hyperparameter optimization and pre-trained agents included.
31
+
32
+ ## Usage (with SB3 RL Zoo)
33
+
34
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo
35
+
36
+ ```
37
+ # Download model and save it into the logs/ folder
38
+ python -m utils.load_from_hub --algo a2c --env MountainCar-v0 -orga sb3 -f logs/
39
+ python enjoy --algo a2c --env MountainCar-v0 -f logs/
40
+ ```
41
+
42
+ ## Training (with the RL Zoo)
43
+ ```
44
+ python train.py --algo a2c --env MountainCar-v0 -f logs/
45
+ # Upload the model and generate video (when possible)
46
+ python -m utils.push_to_hub --algo a2c --env MountainCar-v0 -f logs/ -orga sb3
47
+ ```
48
+
49
+ ## Hyperparameters
50
+ ```python
51
+ OrderedDict([('ent_coef', 0.0),
52
+ ('n_envs', 16),
53
+ ('n_timesteps', 1000000.0),
54
+ ('normalize', True),
55
+ ('policy', 'MlpPolicy'),
56
+ ('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})])
57
+ ```
a2c-MountainCar-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a6ae618cba3e4fc3053f0bff3ab2d1b8e65b98273ed07f33047a1acf1029db09
3
+ size 95663
a2c-MountainCar-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.1a6
a2c-MountainCar-v0/data ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f11e549acb0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f11e549ad40>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f11e549add0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f11e549ae60>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f11e549aef0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f11e549af80>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f11e54a2050>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f11e54a20e0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f11e54a2170>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f11e54a2200>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f11e54a2290>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f11e54ee6f0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {
23
+ ":type:": "<class 'dict'>",
24
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
25
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
26
+ "optimizer_kwargs": {
27
+ "alpha": 0.99,
28
+ "eps": 1e-05,
29
+ "weight_decay": 0
30
+ }
31
+ },
32
+ "observation_space": {
33
+ ":type:": "<class 'gym.spaces.box.Box'>",
34
+ ":serialized:": "gAWVYwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAAJqZmb8pXI+9lGgKSwKFlIwBQ5R0lFKUjARoaWdolGgQKJYIAAAAAAAAAJqZGT8pXI89lGgKSwKFlGgTdJRSlIwNYm91bmRlZF9iZWxvd5RoECiWAgAAAAAAAAABAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksChZRoE3SUUpSMDWJvdW5kZWRfYWJvdmWUaBAolgIAAAAAAAAAAQGUaB9LAoWUaBN0lFKUjApfbnBfcmFuZG9tlE6MBl9zaGFwZZRLAoWUdWIu",
35
+ "dtype": "float32",
36
+ "low": "[-1.2 -0.07]",
37
+ "high": "[0.6 0.07]",
38
+ "bounded_below": "[ True True]",
39
+ "bounded_above": "[ True True]",
40
+ "_np_random": null,
41
+ "_shape": [
42
+ 2
43
+ ]
44
+ },
45
+ "action_space": {
46
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
47
+ ":serialized:": "gAWVNQsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLA4wFZHR5cGWUjAVudW1weZSMBWR0eXBllJOUjAJpOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpRoE4wFc3RhdGWUfZQojANrZXmUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWwAkAAAAAAAAAAACAU8KznIcDtZNy7Ktb6Oay8s+2gdrVBu9hoTFNoGu1zNkT5hifdJx5L8ilG4DEeQFJng9D5F3gGJOSE1XM1EopZNIIlb400J5EcnoD8K2/CnObez7pYLEG2nUDRQtufdYWausENGaDt/P1pS9p70JjQ7Vc98J3UsxGRDctCIlu0I6ud/sYtoBPe575TzLsEti5jl6FqRnKrj12LWcrQoCexe7HH/UiAV1LzyQPzBlSZERXmHCdCvUSF7XpWt47xP9BzzqxX7aH3TPYWImqos1/ez/JlLdsD0MfMZl9G2CQq7cHHRlM3sj7jroA9c+pGt4l/iAGpRb80HbjwU71ykPTAVp531BXrc2qmIU6z9Fh4TAPx7fZ1kVF+L1Irlou+4Ckky7Ys59nB7KkciTI+N5jlb62ybZt0+ZWgIA6LKLvdx/mTQtB4k1aplT/C7L9/ybKCFn2quN/7YlIkxoH1U0xdabG6rgOrR+SHMmvUwvtKB+19Ibb07mSgVQyjNAvnyADPJf3pkxylZtn7f/OVpWEaWfl6BcLwy0grrEgUK+H+8P8XWMuBginXgwzn3sy4+ZOlr45op6TtuqX0Knz/SySGDlBIK8JqKObzB6fGt+ovJHEM8KlL4veKwkLkuuMWBaex3FBdWskry5qhslxMgnk2thh8DaXmAfbuI8j0SqHMW1kleITi9ekfXx/eSi5hX1GjA/M62Zixuay1H8zH9VjsTRcGacyJ0vh1hNReDFoNsXFbLfLqaIvbLDQjY7T289ZXsupvAxu2GVTbqWst+ckPPzwH7vLikULC+weAKwxarqm+ugAXgyz774meHOsvQYuu18nvrrunjZWDvwaKuYohEwUfSnpotE9XhX99yUTc8sGPQidTfXkzm/t8MWP8it4l4VSEgDLn8GW8t2DAh8EwFa/KOGoZEGjYqZ2IMA70E+F2LqgaZlQLFMONTIx3yuN5F2e1MT4v2wdBRK9R+lGMpxIiNldyOwwxLDBTRDMhd7APidmDwQBnvaIecKFa95btwHkRBEUT5g++/I0DDg685EX4OMO2YtTPqM3PQluS4puEhAQRVukNGSh4gYDgcBPKZl4ThNf+G+E7El9fmWJcP39Sifw6Mn+GEisM1RhHY05XZHUv5W4r8kD2jSLMY+IIL2+LtQrW7it7y28+sEicLoEfYOky9ZJF6l0fR+sXEawf+REH9LvtRJ4yzfxr7KisNpr1axv1ae5CDXS+XTzuOG/BJnHvt8arnY1XWH9SdkCOeok6MI8GBCtjTCxJ5JbpI5J0i0A66mJaRW9LMfP6Cil3/cVRQ9uN2KTtV3o7rJwY4XCnj7DJmqrUwofDDl7Ek0PoN7w0Hh8YHOy8qhPw7V8ALdjZn7eYtjCQIldQvHbM1I73RtCLQvQGFMXUCJ022pGRqTvZX5XWSizqbgX6TJmI6LDF9wcpYealB7cDwelfqdpzHRmyjRbIX9b+w4uj//aDRgP2SgiOAq/D/9/0SbgK/E0FQyclhNVAkbKwXhAxKGczpvJow0mFFUAt/5fT5KAsmQTAt8p0FsrGMDTfk4RzZgqZSm+ihVRS371Tx3twpGA1goo/AIfJh8slJC3hkR1OGCN7LAPGCwbM9rHlKSU4uuhJiff196h9q1kPMld6989MfKLVkvCl7ofCRurPUW46ceJKE951sQD1v8cK0HK1JmuBTCXAelCUCIFNLGk3tMXNVmuuFF3o3xb4V4T1IAYIfBdyEVHhIIZOE/JEY79daQw8njYEtQ6YwZ6kNCBYfrjq2OglITcRdwDmINL42ro6HnbWgLZQ8Ce/EiPVBtWHwhvGUHK1FNONzRzXgT1zKEg+WAigeuK4QVIxdITM4YvUyYvpQJuJd+xGD1no7BYIKXdV4aDlsRnWSMmS+zTyTvC0+TgBMCNpMvdChjaB/XTrMVsm0vgPmCYswn067MTYWfm5oCqqmNciqoRfFL2O2mxFT1VMcKDrxHBdBUhSG5UmAerx86KAEytbsCbn6OOj8Y02VwVynzXd0WJfLioeGMZISM1eneWfTc1mQ6CpdDxJqUmU86/KsBL3Bb0S2NAqFysFJZKxDwLej8xz+xH8IxEHzlkiiNH+2IIq0663FAwi6wg6dgcryDqQ+lNDwn898nylrcYShigDrtrFBNezKx3ZjpkPCnPUeQB4hJUrYCUJy5CyytC/x1UsByKez/aSNEWnlWnzYdJf2PoKL0YfmaR3KpXzi9ax3BHPgk1cdmgdVkqevFJ0DUdTBFQj/mhaKqcaT0rKJLgy/11AhWW4nX7+kAdgR0b1iAseI0TbMDtohBuqqUZfqMfUKsdI8v2aeUd0+IqOjPBFe7TZRC7OUYmf789SRTpw9gst4tzx7tLap8JnFt2keKhqd3vBgqpvlsxvx0DcPC+bo/qIldKiAn5D7TPjeWLzJ1gmpk1mVKOyWOv/ZzlRTfe8yEsMsRcgdPxbOuxLjlOwo1uFh9NjHoOz/xbnI62I49ZzT59GUCNtAL74UqjlRoyXZ5ELEjhTn+F5fYfEkY2TnSsgKO4Wwb/xD41S4mBL7LcUyF76ybV7Yx0L6V2QGoSfyhHFqMQJs/haLPPW18mWJb/UDl90ZN9TEzcdXvZsmCeqzCagC6YDHp3fop+5nAQSnT/Byt2j7z+6cnl/aZh6oKs5xrEMmuzpLFbXNVof9hNmX5E0DQ2M8uBqqeW95p6z8ySnOxURAO28oYWsbVyeYaNlWLZrOtIMZDRjjbecSSwMLlrBhw4mZVht4DgOQxI1+P7sPHZLMf89U+5ctf1rD0r1AXgyXjzOxKvCxWMhrz6Ah19+zal/bAIpw+0V7Pq85PRQO4UeScmMwODR8jcOfILuMmo7xXhemY/JqtOncklEaGapMeGlkiefvQkx9L5EWvLn6stI4zRP4pZXx9iOz17IKJmKOVHgCIAOiheb0bwkjNkItlfYO3LzeLLPuBDNLFg7tQu5NPWy28a4nBsE/gsyEteRvF2ECYFIOJg06dzc77IWw7o+z1Q5APxLg9uvyFniYWNuJyk7rflLCmYcg1gN657CWff8YfPr0ukKOamco94X1nFdyroxHiQlRXaP91DOqMueI1pCasyRQt0jtbWwxdEVyzP3GzUZXBWqa0xXCzwe29cxg2aiwKuuAAVfaCE/Pt1cJXq8wvliF81sMDPMbowd9+uyWuExq/e+2W3wWeV3hVofoiEySjBrJPWVJW9++UocJbC0ppNw5mtHktkZqUk6kVtUgVQ4Cj4udj/bluZzcqWjIvOCJO52M+xcQY808Ei8T/lwwS9TguuzQ3e0KR7hptgNcX1/XhCvAuUaAmMAnU0lImIh5RSlChLA2gNTk5OSv////9K/////0sAdJRiTXAChZSMAUOUdJRSlIwDcG9zlE1wAnWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWKMBl9zaGFwZZQpdWIu",
48
+ "n": 3,
49
+ "dtype": "int64",
50
+ "_np_random": "RandomState(MT19937)",
51
+ "_shape": []
52
+ },
53
+ "n_envs": 16,
54
+ "num_timesteps": 1000000,
55
+ "_total_timesteps": 1000000,
56
+ "_num_timesteps_at_start": 0,
57
+ "seed": 0,
58
+ "action_noise": null,
59
+ "start_time": 1614619329.0860138,
60
+ "learning_rate": 0.0007,
61
+ "tensorboard_log": null,
62
+ "lr_schedule": {
63
+ ":type:": "<class 'function'>",
64
+ ":serialized:": "gAWV0QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxRL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS1iYXNlbGluZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxRL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS1iYXNlbGluZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
65
+ },
66
+ "_last_obs": null,
67
+ "_last_episode_starts": null,
68
+ "_last_original_obs": {
69
+ ":type:": "<class 'numpy.ndarray'>",
70
+ ":serialized:": "gAWV9QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAAAAAAAAAG+ZGb8AAAAAu2kCvwAAAACFDw2/AAAAAJyr174AAAAA7QbWvgAAAAD2tQm/AAAAAEjn474AAAAAIOsHvwAAAAAuR9C+AAAAAKSD+74AAAAAU6DUvgAAAAAcEvy+AAAAADZKBb8AAAAAwvLZvgAAAAAxSc++AAAAALEh0L4AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwKGlIwBQ5R0lFKULg=="
71
+ },
72
+ "_episode_num": 0,
73
+ "use_sde": false,
74
+ "sde_sample_freq": -1,
75
+ "_current_progress_remaining": 0.0,
76
+ "ep_info_buffer": {
77
+ ":type:": "<class 'collections.deque'>",
78
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwFVAAAAAAACMAWyUS1WMAXSUR0BxRLO/tY0VdX2UKGgGR8BVQAAAAAAAaAdLVWgIR0BxRLronrprdX2UKGgGR8BXAAAAAAAAaAdLXGgIR0BxRSX9itq6dX2UKGgGR8BdQAAAAAAAaAdLdWgIR0BxRUcaOxSpdX2UKGgGR8BjYAAAAAAAaAdLm2gIR0BxRbJkoWpIdX2UKGgGR8BXQAAAAAAAaAdLXWgIR0BxRmYkVvdedX2UKGgGR8BcQAAAAAAAaAdLcWgIR0BxRmbvw3HadX2UKGgGR8BcQAAAAAAAaAdLcWgIR0BxRoPJ7sv7dX2UKGgGR8BcAAAAAAAAaAdLcGgIR0BxR022oegddX2UKGgGR8BcwAAAAAAAaAdLc2gIR0BxVHnfVI7OdX2UKGgGR8BXwAAAAAAAaAdLX2gIR0BxVMYO2AoYdX2UKGgGR8BdQAAAAAAAaAdLdWgIR0BxVNfUnXumdX2UKGgGR8BkQAAAAAAAaAdLomgIR0BxVZF6Rhc8dX2UKGgGR8BjoAAAAAAAaAdLnWgIR0BxVWLxZuAJdX2UKGgGR8BdAAAAAAAAaAdLdGgIR0BxVltfoicHdX2UKGgGR8BVAAAAAAAAaAdLVGgIR0BxVqBd2PkrdX2UKGgGR8BegAAAAAAAaAdLemgIR0BxVud4FA3UdX2UKGgGR8BdwAAAAAAAaAdLd2gIR0BxVzJRwZO0dX2UKGgGR8BdQAAAAAAAaAdLdWgIR0BxVxltj0+UdX2UKGgGR8BdQAAAAAAAaAdLdWgIR0BxV4vrWy1NdX2UKGgGR8BWgAAAAAAAaAdLWmgIR0BxV73cpLEldX2UKGgGR8BcAAAAAAAAaAdLcGgIR0BxV3XlKbrkdX2UKGgGR8BWgAAAAAAAaAdLWmgIR0BxWIhGH58CdX2UKGgGR8BdQAAAAAAAaAdLdWgIR0BxWM1tO2y+dX2UKGgGR8BdgAAAAAAAaAdLdmgIR0BxWOn/DLr5dX2UKGgGR8BcwAAAAAAAaAdLc2gIR0BxWgh2W6bwdX2UKGgGR8BdQAAAAAAAaAdLdWgIR0BxWc3Mpw0gdX2UKGgGR8BdAAAAAAAAaAdLdGgIR0BxWh3OfNA1dX2UKGgGR8BcAAAAAAAAaAdLcGgIR0BxWna/RE4OdX2UKGgGR8BeAAAAAAAAaAdLeGgIR0BxWwkyDZlGdX2UKGgGR8BWgAAAAAAAaAdLWmgIR0BxWv8l5WzXdX2UKGgGR8BdQAAAAAAAaAdLdWgIR0BxW6SMcZLqdX2UKGgGR8BcgAAAAAAAaAdLcmgIR0BxXGAxzq8ldX2UKGgGR8BVwAAAAAAAaAdLV2gIR0BxXG6qbSZ0dX2UKGgGR8BcwAAAAAAAaAdLc2gIR0BxXFL9MsYmdX2UKGgGR8BcAAAAAAAAaAdLcGgIR0BxXKfNA1NydX2UKGgGR8BcAAAAAAAAaAdLcGgIR0BxXJIVdonKdX2UKGgGR8BYgAAAAAAAaAdLYmgIR0BxXUgX/HYIdX2UKGgGR8BdAAAAAAAAaAdLdGgIR0BxXQ/zJ6ppdX2UKGgGR8BkQAAAAAAAaAdLomgIR0BxXfpyIYWMdX2UKGgGR8BbwAAAAAAAaAdLb2gIR0BxXfTiKiwjdX2UKGgGR8BVgAAAAAAAaAdLVmgIR0BxXvgP3BYWdX2UKGgGR8BdQAAAAAAAaAdLdWgIR0BxX1z5oGpudX2UKGgGR8BdQAAAAAAAaAdLdWgIR0BxXyMDOkckdX2UKGgGR8BcQAAAAAAAaAdLcWgIR0BxX1LrX18LdX2UKGgGR8BVAAAAAAAAaAdLVGgIR0BxX4S6DoQndX2UKGgGR8BdgAAAAAAAaAdLdmgIR0BxX+grYoRadX2UKGgGR8BdgAAAAAAAaAdLdmgIR0BxYGyVv/BFdX2UKGgGR8BXQAAAAAAAaAdLXWgIR0BxYJ7IDHOsdX2UKGgGR8BVgAAAAAAAaAdLVmgIR0BxYJgiNbTudX2UKGgGR8BcAAAAAAAAaAdLcGgIR0BxYXsqril0dX2UKGgGR8BdwAAAAAAAaAdLd2gIR0BxYeQ5myxBdX2UKGgGR8BWgAAAAAAAaAdLWmgIR0BxYgtPHktFdX2UKGgGR8BdAAAAAAAAaAdLdGgIR0BxYdepn6EbdX2UKGgGR8BdQAAAAAAAaAdLdWgIR0BxYpVHWjGldX2UKGgGR8BcgAAAAAAAaAdLcmgIR0BxYjDcdo38dX2UKGgGR8BVAAAAAAAAaAdLVGgIR0BxY1rsSkCWdX2UKGgGR8BdgAAAAAAAaAdLdmgIR0BxY2aOPvKEdX2UKGgGR8BcAAAAAAAAaAdLcGgIR0BxZAuEmICVdX2UKGgGR8BcgAAAAAAAaAdLcmgIR0BxZJW6shgWdX2UKGgGR8BbwAAAAAAAaAdLb2gIR0BxZPd43WFwdX2UKGgGR8BdQAAAAAAAaAdLdWgIR0BxZcPatcOcdX2UKGgGR8BcAAAAAAAAaAdLcGgIR0BxZbVjI7vHdX2UKGgGR8Bi4AAAAAAAaAdLl2gIR0BxZhrl/6O6dX2UKGgGR8BjYAAAAAAAaAdLm2gIR0BxZmxzJZGKdX2UKGgGR8BXQAAAAAAAaAdLXWgIR0BxZiyVv/BFdX2UKGgGR8BdQAAAAAAAaAdLdWgIR0BxZugwoLG8dX2UKGgGR8BcQAAAAAAAaAdLcWgIR0BxZx81Gb1AdX2UKGgGR8BZAAAAAAAAaAdLZGgIR0BxZqtGNJe3dX2UKGgGR8BbwAAAAAAAaAdLb2gIR0BxZ2G1x82KdX2UKGgGR8BcQAAAAAAAaAdLcWgIR0BxZ9diUgSwdX2UKGgGR8BWQAAAAAAAaAdLWWgIR0BxaC1stTUBdX2UKGgGR8BYgAAAAAAAaAdLYmgIR0BxZ9ivxH5KdX2UKGgGR8BkoAAAAAAAaAdLpWgIR0BxaDDGcWj5dX2UKGgGR8BYgAAAAAAAaAdLYmgIR0BxaR+y7f52dX2UKGgGR8BdAAAAAAAAaAdLdGgIR0BxaLtIClrNdX2UKGgGR8BWwAAAAAAAaAdLW2gIR0BxaeECeVcEdX2UKGgGR8BbwAAAAAAAaAdLb2gIR0Bxaf+JgsshdX2UKGgGR8BXgAAAAAAAaAdLXmgIR0BxalaiblRxdX2UKGgGR8BWgAAAAAAAaAdLWmgIR0BxaydCmdiEdX2UKGgGR8BVwAAAAAAAaAdLV2gIR0Bxa8FMZgogdX2UKGgGR8BdAAAAAAAAaAdLdGgIR0Bxa6HVPN3XdX2UKGgGR8BcAAAAAAAAaAdLcGgIR0Bxa6/9Hc1wdX2UKGgGR8BWQAAAAAAAaAdLWWgIR0BxbDK1XvH+dX2UKGgGR8BbwAAAAAAAaAdLb2gIR0BxbF1gYxcndX2UKGgGR8BcQAAAAAAAaAdLcWgIR0BxbPUqhDgJdX2UKGgGR8BWQAAAAAAAaAdLWWgIR0BxbQ9mpVCHdX2UKGgGR8BcQAAAAAAAaAdLcWgIR0BxbUj4YaYNdX2UKGgGR8BlIAAAAAAAaAdLqWgIR0BxbWGpMpPRdX2UKGgGR8BjQAAAAAAAaAdLmmgIR0BxbeV3Ux20dX2UKGgGR8BkoAAAAAAAaAdLpWgIR0BxbZbY9Pk8dX2UKGgGR8BcAAAAAAAAaAdLcGgIR0Bxbby4FzMidX2UKGgGR8BcwAAAAAAAaAdLc2gIR0BxbxjkMkQgdX2UKGgGR8BcgAAAAAAAaAdLcmgIR0Bxby9TP0I1dX2UKGgGR8BVgAAAAAAAaAdLVmgIR0Bxb69i+cpcdX2UKGgGR8BWAAAAAAAAaAdLWGgIR0Bxb56sySFHdX2UKGgGR8BcAAAAAAAAaAdLcGgIR0Bxb4CuEEkjdX2UKGgGR8BdQAAAAAAAaAdLdWgIR0BxcHoSteUqdX2UKGgGR8BXgAAAAAAAaAdLXmgIR0Bxb/4QBgeBdX2UKGgGR8BVwAAAAAAAaAdLV2gIR0BxcE83dbgTdWUu"
79
+ },
80
+ "ep_success_buffer": {
81
+ ":type:": "<class 'collections.deque'>",
82
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
83
+ },
84
+ "_n_updates": 12500,
85
+ "n_steps": 5,
86
+ "gamma": 0.99,
87
+ "gae_lambda": 1.0,
88
+ "ent_coef": 0.0,
89
+ "vf_coef": 0.5,
90
+ "max_grad_norm": 0.5,
91
+ "normalize_advantage": false,
92
+ "_last_dones": {
93
+ ":type:": "<class 'numpy.ndarray'>",
94
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
95
+ }
96
+ }
a2c-MountainCar-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bcef2773150e00df42f230064b41b29b048aaa2d635779d29d6a324b7562cfbd
3
+ size 39105
a2c-MountainCar-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:57f316f68b8ec5eab53f1a15a6f39db03b636a8fe042eb94ea15de003edc04f7
3
+ size 39745
a2c-MountainCar-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-MountainCar-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.0-110-generic-x86_64-with-debian-bullseye-sid #124-Ubuntu SMP Thu Apr 14 19:46:19 UTC 2022
2
+ Python: 3.7.12
3
+ Stable-Baselines3: 1.5.1a6
4
+ PyTorch: 1.11.0+cpu
5
+ GPU Enabled: False
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
args.yml ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - a2c
4
+ - - env
5
+ - MountainCar-v0
6
+ - - env_kwargs
7
+ - null
8
+ - - eval_episodes
9
+ - 10
10
+ - - eval_freq
11
+ - 10000
12
+ - - gym_packages
13
+ - []
14
+ - - hyperparams
15
+ - null
16
+ - - log_folder
17
+ - rl-trained-agents/
18
+ - - log_interval
19
+ - -1
20
+ - - n_evaluations
21
+ - 20
22
+ - - n_jobs
23
+ - 1
24
+ - - n_startup_trials
25
+ - 10
26
+ - - n_timesteps
27
+ - -1
28
+ - - n_trials
29
+ - 10
30
+ - - num_threads
31
+ - -1
32
+ - - optimize_hyperparameters
33
+ - false
34
+ - - pruner
35
+ - median
36
+ - - sampler
37
+ - tpe
38
+ - - save_freq
39
+ - -1
40
+ - - save_replay_buffer
41
+ - false
42
+ - - seed
43
+ - 3039244810
44
+ - - storage
45
+ - null
46
+ - - study_name
47
+ - null
48
+ - - tensorboard_log
49
+ - ''
50
+ - - trained_agent
51
+ - ''
52
+ - - truncate_last_trajectory
53
+ - true
54
+ - - uuid
55
+ - true
56
+ - - vec_env
57
+ - dummy
58
+ - - verbose
59
+ - 1
config.yml ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - ent_coef
3
+ - 0.0
4
+ - - n_envs
5
+ - 16
6
+ - - n_timesteps
7
+ - 1000000.0
8
+ - - normalize
9
+ - true
10
+ - - policy
11
+ - MlpPolicy
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0bb71415f65bde007bbd87c3edba94539db0e94b8485b9f112349abf0a20b7f2
3
+ size 263836
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -110.6, "std_reward": 19.422667170087635, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-20T09:35:49.509692"}
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:99a7b0fe395d2a8f26191238479bd906d1e403be25f0ab4f64ad6a7ee01d5bdb
3
+ size 196897
vec_normalize.pkl ADDED
Binary file (4.4 kB). View file