--- library_name: stable-baselines3 tags: - MountainCar-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: ARS results: - metrics: - type: mean_reward value: -123.30 +/- 27.17 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: MountainCar-v0 type: MountainCar-v0 --- # **ARS** Agent playing **MountainCar-v0** This is a trained model of a **ARS** agent playing **MountainCar-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo
SB3: https://github.com/DLR-RM/stable-baselines3
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo ars --env MountainCar-v0 -orga sb3 -f logs/ python enjoy.py --algo ars --env MountainCar-v0 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo ars --env MountainCar-v0 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo ars --env MountainCar-v0 -f logs/ -orga sb3 ``` ## Hyperparameters ```python OrderedDict([('delta_std', 0.1), ('learning_rate', 0.018), ('n_delta', 8), ('n_envs', 8), ('n_timesteps', 500000.0), ('n_top', 1), ('normalize', 'dict(norm_obs=True, norm_reward=False)'), ('policy', 'MlpPolicy'), ('policy_kwargs', 'dict(net_arch=[16])'), ('zero_policy', False), ('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})]) ```