araffin commited on
Commit
f8b9870
·
verified ·
1 Parent(s): b3d9c15

Initial Commit

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - MountainCar-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: DQN
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: -112.60 +/- 24.36
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: MountainCar-v0
20
+ type: MountainCar-v0
21
+ ---
22
+
23
+ # **DQN** Agent playing **MountainCar-v0**
24
+ This is a trained model of a **DQN** agent playing **MountainCar-v0**
25
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
26
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
27
+
28
+ The RL Zoo is a training framework for Stable Baselines3
29
+ reinforcement learning agents,
30
+ with hyperparameter optimization and pre-trained agents included.
31
+
32
+ ## Usage (with SB3 RL Zoo)
33
+
34
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo
35
+
36
+ ```
37
+ # Download model and save it into the logs/ folder
38
+ python -m utils.load_from_hub --algo dqn --env MountainCar-v0 -orga sb3 -f logs/
39
+ python enjoy --algo dqn --env MountainCar-v0 -f logs/
40
+ ```
41
+
42
+ ## Training (with the RL Zoo)
43
+ ```
44
+ python train.py --algo dqn --env MountainCar-v0 -f logs/
45
+ # Upload the model and generate video (when possible)
46
+ python -m utils.push_to_hub --algo dqn --env MountainCar-v0 -f logs/ -orga sb3
47
+ ```
args.yml ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - dqn
4
+ - - device
5
+ - auto
6
+ - - env
7
+ - MountainCar-v0
8
+ - - env_kwargs
9
+ - null
10
+ - - eval_episodes
11
+ - 5
12
+ - - eval_freq
13
+ - 25000
14
+ - - gym_packages
15
+ - []
16
+ - - hyperparams
17
+ - null
18
+ - - log_folder
19
+ - logs
20
+ - - log_interval
21
+ - -1
22
+ - - n_eval_envs
23
+ - 1
24
+ - - n_evaluations
25
+ - null
26
+ - - n_jobs
27
+ - 1
28
+ - - n_startup_trials
29
+ - 10
30
+ - - n_timesteps
31
+ - -1
32
+ - - n_trials
33
+ - 500
34
+ - - no_optim_plots
35
+ - false
36
+ - - num_threads
37
+ - -1
38
+ - - optimization_log_path
39
+ - null
40
+ - - optimize_hyperparameters
41
+ - false
42
+ - - pruner
43
+ - median
44
+ - - sampler
45
+ - tpe
46
+ - - save_freq
47
+ - -1
48
+ - - save_replay_buffer
49
+ - false
50
+ - - seed
51
+ - 2005659129
52
+ - - storage
53
+ - null
54
+ - - study_name
55
+ - null
56
+ - - tensorboard_log
57
+ - ''
58
+ - - track
59
+ - false
60
+ - - trained_agent
61
+ - ''
62
+ - - truncate_last_trajectory
63
+ - true
64
+ - - uuid
65
+ - false
66
+ - - vec_env
67
+ - dummy
68
+ - - verbose
69
+ - 1
70
+ - - wandb_entity
71
+ - null
72
+ - - wandb_project_name
73
+ - sb3
config.yml ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - batch_size
3
+ - 128
4
+ - - buffer_size
5
+ - 10000
6
+ - - exploration_final_eps
7
+ - 0.07
8
+ - - exploration_fraction
9
+ - 0.2
10
+ - - gamma
11
+ - 0.98
12
+ - - gradient_steps
13
+ - 8
14
+ - - learning_rate
15
+ - 0.004
16
+ - - learning_starts
17
+ - 1000
18
+ - - n_timesteps
19
+ - 120000.0
20
+ - - policy
21
+ - MlpPolicy
22
+ - - policy_kwargs
23
+ - dict(net_arch=[256, 256])
24
+ - - target_update_interval
25
+ - 600
26
+ - - train_freq
27
+ - 16
dqn-MountainCar-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9991681e4b2383b8978b2dc7c3092287654f968da9a631511fe5c7f905d3ef77
3
+ size 1103671
dqn-MountainCar-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.1a6
dqn-MountainCar-v0/data ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.dqn.policies",
6
+ "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function DQNPolicy.__init__ at 0x7f0d327ddb00>",
8
+ "_build": "<function DQNPolicy._build at 0x7f0d327ddb90>",
9
+ "make_q_net": "<function DQNPolicy.make_q_net at 0x7f0d327ddc20>",
10
+ "forward": "<function DQNPolicy.forward at 0x7f0d327ddcb0>",
11
+ "_predict": "<function DQNPolicy._predict at 0x7f0d327ddd40>",
12
+ "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7f0d327dddd0>",
13
+ "set_training_mode": "<function DQNPolicy.set_training_mode at 0x7f0d327dde60>",
14
+ "__abstractmethods__": "frozenset()",
15
+ "_abc_impl": "<_abc_data object at 0x7f0d327d64b0>"
16
+ },
17
+ "verbose": 1,
18
+ "policy_kwargs": {
19
+ "net_arch": [
20
+ 256,
21
+ 256
22
+ ]
23
+ },
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVYwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAACamZm/KVyPvZRoCksChZSMAUOUdJRSlIwEaGlnaJRoEiiWCAAAAAAAAACamRk/KVyPPZRoCksChZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolgIAAAAAAAAAAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYCAAAAAAAAAAEBlGghSwKFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 2
30
+ ],
31
+ "low": "[-1.2 -0.07]",
32
+ "high": "[0.6 0.07]",
33
+ "bounded_below": "[ True True]",
34
+ "bounded_above": "[ True True]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVLwsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLA4wGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAAAAAgFPCs5yHA7WTcuyrW+jmsvLPtoHa1QbvYaExTaBrtczZE+YYn3SceS/IpRuAxHkBSZ4PQ+Rd4BiTkhNVzNRKKWTSCJW+NNCeRHJ6A/Ctvwpzm3s+6WCxBtp1A0ULbn3WFmrrBDRmg7fz9aUvae9CY0O1XPfCd1LMRkQ3LQiJbtCOrnf7GLaAT3ue+U8y7BLYuY5ehakZyq49di1nK0KAnsXuxx/1IgFdS88kD8wZUmREV5hwnQr1Ehe16VreO8T/Qc86sV+2h90z2FiJqqLNf3s/yZS3bA9DHzGZfRtgkKu3Bx0ZTN7I+466APXPqRreJf4gBqUW/NB248FO9cpD0wFaed9QV63NqpiFOs/RYeEwD8e32dZFRfi9SK5aLvuApJMu2LOfZweypHIkyPjeY5W+tsm2bdPmVoCAOiyi73cf5k0LQeJNWqZU/wuy/f8myghZ9qrjf+2JSJMaB9VNMXWmxuq4Dq0fkhzJr1ML7SgftfSG29O5koFUMozQL58gAzyX96ZMcpWbZ+3/zlaVhGln5egXC8MtIK6xIFCvh/vD/F1jLgYIp14MM597MuPmTpa+OaKek7bql9Cp8/0skhg5QSCvCaijm8wenxrfqLyRxDPCpS+L3isJC5LrjFgWnsdxQXVrJK8uaobJcTIJ5NrYYfA2l5gH27iPI9EqhzFtZJXiE4vXpH18f3kouYV9RowPzOtmYsbmstR/Mx/VY7E0XBmnMidL4dYTUXgxaDbFxWy3y6miL2yw0I2O09vPWV7LqbwMbthlU26lrLfnJDz88B+7y4pFCwvsHgCsMWq6pvroAF4Ms+++JnhzrL0GLrtfJ7667p42Vg78GirmKIRMFH0p6aLRPV4V/fclE3PLBj0InU315M5v7fDFj/IreJeFUhIAy5/BlvLdgwIfBMBWvyjhqGRBo2KmdiDAO9BPhdi6oGmZUCxTDjUyMd8rjeRdntTE+L9sHQUSvUfpRjKcSIjZXcjsMMSwwU0QzIXewD4nZg8EAZ72iHnChWveW7cB5EQRFE+YPvvyNAw4OvORF+DjDtmLUz6jNz0JbkuKbhIQEEVbpDRkoeIGA4HATymZeE4TX/hvhOxJfX5liXD9/Uon8OjJ/hhIrDNUYR2NOV2R1L+VuK/JA9o0izGPiCC9vi7UK1u4re8tvPrBInC6BH2DpMvWSRepdH0frFxGsH/kRB/S77USeMs38a+yorDaa9Wsb9WnuQg10vl087jhvwSZx77fGq52NV1h/UnZAjnqJOjCPBgQrY0wsSeSW6SOSdItAOupiWkVvSzHz+gopd/3FUUPbjdik7Vd6O6ycGOFwp4+wyZqq1MKHww5exJND6De8NB4fGBzsvKoT8O1fAC3Y2Z+3mLYwkCJXULx2zNSO90bQi0L0BhTF1AidNtqRkak72V+V1kos6m4F+kyZiOiwxfcHKWHmpQe3A8HpX6nacx0Zso0WyF/W/sOLo//2g0YD9koIjgKvw//f9Em4CvxNBUMnJYTVQJGysF4QMShnM6byaMNJhRVALf+X0+SgLJkEwLfKdBbKxjA035OEc2YKmUpvooVUUt+9U8d7cKRgNYKKPwCHyYfLJSQt4ZEdThgjeywDxgsGzPax5SklOLroSYn39feofatZDzJXevfPTHyi1ZLwpe6Hwkbqz1FuOnHiShPedbEA9b/HCtBytSZrgUwlwHpQlAiBTSxpN7TFzVZrrhRd6N8W+FeE9SAGCHwXchFR4SCGThPyRGO/XWkMPJ42BLUOmMGepDQgWH646tjoJSE3EXcA5iDS+Nq6Oh521oC2UPAnvxIj1QbVh8IbxlBytRTTjc0c14E9cyhIPlgIoHriuEFSMXSEzOGL1MmL6UCbiXfsRg9Z6OwWCCl3VeGg5bEZ1kjJkvs08k7wtPk4ATAjaTL3QoY2gf106zFbJtL4D5gmLMJ9OuzE2Fn5uaAqqpjXIqqEXxS9jtpsRU9VTHCg68RwXQVIUhuVJgHq8fOigBMrW7Am5+jjo/GNNlcFcp813dFiXy4qHhjGSEjNXp3ln03NZkOgqXQ8SalJlPOvyrAS9wW9EtjQKhcrBSWSsQ8C3o/Mc/sR/CMRB85ZIojR/tiCKtOutxQMIusIOnYHK8g6kPpTQ8J/PfJ8pa3GEoYoA67axQTXsysd2Y6ZDwpz1HkAeISVK2AlCcuQssrQv8dVLAcins/2kjRFp5Vp82HSX9j6Ci9GH5mkdyqV84vWsdwRz4JNXHZoHVZKnrxSdA1HUwRUI/5oWiqnGk9KyiS4Mv9dQIVluJ1+/pAHYEdG9YgLHiNE2zA7aIQbqqlGX6jH1CrHSPL9mnlHdPiKjozwRXu02UQuzlGJn+/PUkU6cPYLLeLc8e7S2qfCZxbdpHioand7wYKqb5bMb8dA3Dwvm6P6iJXSogJ+Q+0z43li8ydYJqZNZlSjsljr/2c5UU33vMhLDLEXIHT8WzrsS45TsKNbhYfTYx6Ds/8W5yOtiOPWc0+fRlAjbQC++FKo5UaMl2eRCxI4U5/heX2HxJGNk50rICjuFsG/8Q+NUuJgS+y3FMhe+sm1e2MdC+ldkBqEn8oRxajECbP4Wizz1tfJliW/1A5fdGTfUxM3HV72bJgnqswmoAumAx6d36KfuZwEEp0/wcrdo+8/unJ5f2mYeqCrOcaxDJrs6SxW1zVaH/YTZl+RNA0NjPLgaqnlveaes/MkpzsVEQDtvKGFrG1cnmGjZVi2azrSDGQ0Y423nEksDC5awYcOJmVYbeA4DkMSNfj+7Dx2SzH/PVPuXLX9aw9K9QF4Ml48zsSrwsVjIa8+gIdffs2pf2wCKcPtFez6vOT0UDuFHknJjMDg0fI3DnyC7jJqO8V4XpmPyarTp3JJRGhmqTHhpZInn70JMfS+RFry5+rLSOM0T+KWV8fYjs9eyCiZijlR4AiADooXm9G8JIzZCLZX2Dty83iyz7gQzSxYO7ULuTT1stvGuJwbBP4LMhLXkbxdhAmBSDiYNOnc3O+yFsO6Ps9UOQD8S4Pbr8hZ4mFjbicpO635SwpmHINYDeuewln3/GHz69LpCjmpnKPeF9ZxXcq6MR4kJUV2j/dQzqjLniNaQmrMkULdI7W1sMXRFcsz9xs1GVwVqmtMVws8HtvXMYNmosCrrgAFX2ghPz7dXCV6vML5YhfNbDAzzG6MHffrslrhMav3vtlt8Fnld4VaH6IhMkowayT1lSVvfvlKHCWwtKaTcOZrR5LZGalJOpFbVIFUOAo+LnY/25bmc3KloyLzgiTudjPsXEGPNPBIvE/5cMEvU4Lrs0N3tCke4abYDXF9f14QrwLlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
40
+ "n": 3,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": "RandomState(MT19937)"
44
+ },
45
+ "n_envs": 1,
46
+ "num_timesteps": 120000,
47
+ "_total_timesteps": 120000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": 0,
50
+ "action_noise": null,
51
+ "start_time": 1653001354.9738004,
52
+ "learning_rate": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWV0QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxRL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS1iYXNlbGluZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxRL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS1iYXNlbGluZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9wYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
55
+ },
56
+ "tensorboard_log": null,
57
+ "lr_schedule": {
58
+ ":type:": "<class 'function'>",
59
+ ":serialized:": "gAWV0QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxRL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS1iYXNlbGluZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxRL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS1iYXNlbGluZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9wYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
60
+ },
61
+ "_last_obs": null,
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": {
67
+ ":type:": "<class 'numpy.ndarray'>",
68
+ ":serialized:": "gAWVfQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAALXhUL/SFgG8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwKGlIwBQ5R0lFKULg=="
69
+ },
70
+ "_episode_num": 765,
71
+ "use_sde": false,
72
+ "sde_sample_freq": -1,
73
+ "_current_progress_remaining": 0.0,
74
+ "ep_info_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwFyAAAAAAACMAWyUS3KMAXSUR0BxomXSjQAudX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Bxq64c3l0YdX2UKGgGR8BagAAAAAAAaAdLamgIR0Bxr/l8w5/9dX2UKGgGR8BeAAAAAAAAaAdLeGgIR0BxtaZy+6AfdX2UKGgGR8BbAAAAAAAAaAdLbGgIR0Bxumf16E8JdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BxwtBVuJk5dX2UKGgGR8BcwAAAAAAAaAdLc2gIR0Bxx3X+VC5VdX2UKGgGR8BnAAAAAAAAaAdLuGgIR0Bxz1OFg2IgdX2UKGgGR8BmIAAAAAAAaAdLsWgIR0Bx1pEpiI+GdX2UKGgGR8BYQAAAAAAAaAdLYWgIR0Bx2qMcZLqVdX2UKGgGR8BfQAAAAAAAaAdLfWgIR0Bx4Fnf2saLdX2UKGgGR8BagAAAAAAAaAdLamgIR0Bx5JaMaS9vdX2UKGgGR8BbwAAAAAAAaAdLb2gIR0Bx6Wk56t1ZdX2UKGgGR8BbAAAAAAAAaAdLbGgIR0Bx7l+lTFVDdX2UKGgGR8Bg4AAAAAAAaAdLh2gIR0Bx8+GgzxgBdX2UKGgGR8BnQAAAAAAAaAdLumgIR0Bx/DPeHi3odX2UKGgGR8BcAAAAAAAAaAdLcGgIR0ByAOD/VAiWdX2UKGgGR8BXAAAAAAAAaAdLXGgIR0ByBO/i5uqFdX2UKGgGR8BaQAAAAAAAaAdLaWgIR0ByCQURFqi5dX2UKGgGR8BcwAAAAAAAaAdLc2gIR0ByDl/SYw7DdX2UKGgGR8Bj4AAAAAAAaAdLn2gIR0ByFIGwA2hqdX2UKGgGR8BbwAAAAAAAaAdLb2gIR0ByGSjvd/KAdX2UKGgGR8BYAAAAAAAAaAdLYGgIR0ByHSPsAvL6dX2UKGgGR8BfgAAAAAAAaAdLfmgIR0ByIolnh86WdX2UKGgGR8BbgAAAAAAAaAdLbmgIR0ByJyRvFWGRdX2UKGgGR8BbQAAAAAAAaAdLbWgIR0ByK8UmD15CdX2UKGgGR8BcQAAAAAAAaAdLcWgIR0ByMHIsAeaKdX2UKGgGR8BagAAAAAAAaAdLamgIR0ByNVQSBbwCdX2UKGgGR8BbgAAAAAAAaAdLbmgIR0ByOf4h2W6cdX2UKGgGR8BcwAAAAAAAaAdLc2gIR0ByPq7nPmgbdX2UKGgGR8BagAAAAAAAaAdLamgIR0ByQuGzru6VdX2UKGgGR8BcAAAAAAAAaAdLcGgIR0ByR6GmDUVjdX2UKGgGR8BbwAAAAAAAaAdLb2gIR0ByTEvAXVLBdX2UKGgGR8BbgAAAAAAAaAdLbmgIR0ByURqagElmdX2UKGgGR8BbAAAAAAAAaAdLbGgIR0ByVbwZwXImdX2UKGgGR8BcAAAAAAAAaAdLcGgIR0ByWpRaX8fndX2UKGgGR8BbgAAAAAAAaAdLbmgIR0ByXz04BFNMdX2UKGgGR8BagAAAAAAAaAdLamgIR0ByY7fm9xp+dX2UKGgGR8BcQAAAAAAAaAdLcWgIR0ByaG3AmAskdX2UKGgGR8BcwAAAAAAAaAdLc2gIR0BybbqSowVTdX2UKGgGR8BWgAAAAAAAaAdLWmgIR0BycScVgx8EdX2UKGgGR8BagAAAAAAAaAdLamgIR0ByddiKBNEgdX2UKGgGR8BWQAAAAAAAaAdLWWgIR0ByeW9alk6LdX2UKGgGR8BcgAAAAAAAaAdLcmgIR0Byfs08/2TQdX2UKGgGR8BcAAAAAAAAaAdLcGgIR0Byg4Ny5qdpdX2UKGgGR8BcgAAAAAAAaAdLcmgIR0ByiD9tMwlCdX2UKGgGR8BmIAAAAAAAaAdLsWgIR0Byj5zhgmZ3dX2UKGgGR8BbwAAAAAAAaAdLb2gIR0BylGZ5Rjz7dX2UKGgGR8BcAAAAAAAAaAdLcGgIR0BymTyCnP3SdX2UKGgGR8Bj4AAAAAAAaAdLn2gIR0Byn/FHavicdX2UKGgGR8BfAAAAAAAAaAdLfGgIR0BypMJfICEIdX2UKGgGR8BoIAAAAAAAaAdLwWgIR0ByrP9kz41xdX2UKGgGR8BcgAAAAAAAaAdLcmgIR0Byskfms/6gdX2UKGgGR8BWQAAAAAAAaAdLWWgIR0Bytbhjvuw5dX2UKGgGR8BWQAAAAAAAaAdLWWgIR0Byubv7WNFSdX2UKGgGR8BcQAAAAAAAaAdLcWgIR0ByvoPTXrdFdX2UKGgGR8BcAAAAAAAAaAdLcGgIR0Byw0TxoZhsdX2UKGgGR8BYQAAAAAAAaAdLYWgIR0Byx2Q3gk1NdX2UKGgGR8BjAAAAAAAAaAdLmGgIR0ByzYXxe9i+dX2UKGgGR8BjoAAAAAAAaAdLnWgIR0By1HBGhEjPdX2UKGgGR8BjgAAAAAAAaAdLnGgIR0By3LhOxjaxdX2UKGgGR8BcQAAAAAAAaAdLcWgIR0By4bj/+85CdX2UKGgGR8BfwAAAAAAAaAdLf2gIR0By50mQbMoudX2UKGgGR8BWAAAAAAAAaAdLWGgIR0By6tb3XZoPdX2UKGgGR8BlIAAAAAAAaAdLqWgIR0By8kI0IkZ8dX2UKGgGR8BcwAAAAAAAaAdLc2gIR0By9zxlQMx5dX2UKGgGR8BgQAAAAAAAaAdLgmgIR0By/L+n62v0dX2UKGgGR8Bi4AAAAAAAaAdLl2gIR0BzA61twaR7dX2UKGgGR8BcwAAAAAAAaAdLc2gIR0BzCJM7EHdHdX2UKGgGR8BcwAAAAAAAaAdLc2gIR0BzDVrj5sTGdX2UKGgGR8BawAAAAAAAaAdLa2gIR0BzEhHLA57xdX2UKGgGR8BewAAAAAAAaAdLe2gIR0BzFxyhi9ZidX2UKGgGR8BigAAAAAAAaAdLlGgIR0BzHd5gPVd5dX2UKGgGR8BdgAAAAAAAaAdLdmgIR0BzIqZWq95AdX2UKGgGR8BbwAAAAAAAaAdLb2gIR0BzJ2XHBDXwdX2UKGgGR8BlIAAAAAAAaAdLqWgIR0BzLvaURnOCdX2UKGgGR8BiwAAAAAAAaAdLlmgIR0BzNWFxn3+NdX2UKGgGR8BmoAAAAAAAaAdLtWgIR0BzPPRLK3d9dX2UKGgGR8BZAAAAAAAAaAdLZGgIR0BzQasmv4dqdX2UKGgGR8BXAAAAAAAAaAdLXGgIR0BzRXKSxJNCdX2UKGgGR8BjgAAAAAAAaAdLnGgIR0BzTDVwxWT5dX2UKGgGR8BXAAAAAAAAaAdLXGgIR0BzUEVgx8D0dX2UKGgGR8BcQAAAAAAAaAdLcWgIR0BzVRAmiQDFdX2UKGgGR8BlIAAAAAAAaAdLqWgIR0BzXGcvugHvdX2UKGgGR8BcgAAAAAAAaAdLcmgIR0BzYc9ECvHMdX2UKGgGR8BcAAAAAAAAaAdLcGgIR0BzZqKrJbMYdX2UKGgGR8BWAAAAAAAAaAdLWGgIR0Bzaha0QbuMdX2UKGgGR8BewAAAAAAAaAdLe2gIR0Bzb49xIatLdX2UKGgGR8BcAAAAAAAAaAdLcGgIR0BzdFkGzKLbdX2UKGgGR8BfAAAAAAAAaAdLfGgIR0BzeUWqLjxTdX2UKGgGR8BbwAAAAAAAaAdLb2gIR0BzfmunuRcNdX2UKGgGR8BawAAAAAAAaAdLa2gIR0Bzg1Xr+o9+dX2UKGgGR8BiIAAAAAAAaAdLkWgIR0BziYtUXHindX2UKGgGR8BbwAAAAAAAaAdLb2gIR0BzjmVB2OhkdX2UKGgGR8BagAAAAAAAaAdLamgIR0Bzk2I42jwhdX2UKGgGR8BdQAAAAAAAaAdLdWgIR0BzmDqhUR4AdX2UKGgGR8BmIAAAAAAAaAdLsWgIR0Bzn8eMhougdX2UKGgGR8BdQAAAAAAAaAdLdWgIR0BzpKrU9ZA6dX2UKGgGR8BbQAAAAAAAaAdLbWgIR0BzqWyfL9uQdX2UKGgGR8BcQAAAAAAAaAdLcWgIR0BzrnGNrCWNdWUu"
77
+ },
78
+ "ep_success_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
81
+ },
82
+ "_n_updates": 59504,
83
+ "buffer_size": 1,
84
+ "batch_size": 128,
85
+ "learning_starts": 1000,
86
+ "tau": 1.0,
87
+ "gamma": 0.98,
88
+ "gradient_steps": 8,
89
+ "optimize_memory_usage": false,
90
+ "replay_buffer_class": {
91
+ ":type:": "<class 'abc.ABCMeta'>",
92
+ ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
93
+ "__module__": "stable_baselines3.common.buffers",
94
+ "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device:\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
95
+ "__init__": "<function ReplayBuffer.__init__ at 0x7f0d32c4eef0>",
96
+ "add": "<function ReplayBuffer.add at 0x7f0d32c4ef80>",
97
+ "sample": "<function ReplayBuffer.sample at 0x7f0d32c43680>",
98
+ "_get_samples": "<function ReplayBuffer._get_samples at 0x7f0d32c43710>",
99
+ "__abstractmethods__": "frozenset()",
100
+ "_abc_impl": "<_abc_data object at 0x7f0d32cae450>"
101
+ },
102
+ "replay_buffer_kwargs": {},
103
+ "train_freq": {
104
+ ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
105
+ ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLEGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
106
+ },
107
+ "actor": null,
108
+ "use_sde_at_warmup": false,
109
+ "exploration_initial_eps": 1.0,
110
+ "exploration_final_eps": 0.07,
111
+ "exploration_fraction": 0.2,
112
+ "target_update_interval": 600,
113
+ "_n_calls": 120000,
114
+ "max_grad_norm": 10,
115
+ "exploration_rate": 0.07,
116
+ "exploration_schedule": {
117
+ ":type:": "<class 'function'>",
118
+ ":serialized:": "gAWVdQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsESxNDLGQBfAAYAIgBawRyEIgAUwCIAmQBfAAYAIgAiAIYABQAiAEbABcAUwBkAFMAlE5LAYaUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjFEvaG9tZS9hbnRvbmluL0RvY3VtZW50cy9kbHIvcmwvdG9yY2h5LWJhc2VsaW5lcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEtuQwYAAQwBBAKUjANlbmSUjAxlbmRfZnJhY3Rpb26UjAVzdGFydJSHlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjFEvaG9tZS9hbnRvbmluL0RvY3VtZW50cy9kbHIvcmwvdG9yY2h5LWJhc2VsaW5lcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpRoHilSlGgeKVKUh5R0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCR9lH2UKGgZaA6MDF9fcXVhbG5hbWVfX5SMG2dldF9saW5lYXJfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lChoC4wIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgwdYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBqMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP7HrhR64UeyFlFKUaDhHP8mZmZmZmZqFlFKUaDhHP/AAAAAAAACFlFKUh5SMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
119
+ }
120
+ }
dqn-MountainCar-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4b69761a0b36b41b748e2b58450001b348710ae367027761aee5ab618dbfcdac
3
+ size 541889
dqn-MountainCar-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a27da425906ebb67c2597d92018d525f2313461f44696ef6bd574385ebf68b19
3
+ size 542593
dqn-MountainCar-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
dqn-MountainCar-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.0-110-generic-x86_64-with-debian-bullseye-sid #124-Ubuntu SMP Thu Apr 14 19:46:19 UTC 2022
2
+ Python: 3.7.12
3
+ Stable-Baselines3: 1.5.1a6
4
+ PyTorch: 1.11.0+cpu
5
+ GPU Enabled: False
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5a974862661a5d9e51a943188ff6d62cdf365d62e9b2f04a6f46f57c4b5b73c0
3
+ size 259319
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -112.6, "std_reward": 24.364728605096342, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-20T01:08:39.307041"}