araffin commited on
Commit
5d8271b
·
verified ·
1 Parent(s): 95b5cec

Initial Commit

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - CartPole-v1
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 500.00 +/- 0.00
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: CartPole-v1
20
+ type: CartPole-v1
21
+ ---
22
+
23
+ # **PPO** Agent playing **CartPole-v1**
24
+ This is a trained model of a **PPO** agent playing **CartPole-v1**
25
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
26
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo)
27
+
28
+ ## Usage (with SB3 RL Zoo)
29
+ ```
30
+ # Download model and save it into the logs/ folder
31
+ python -m utils.load_from_hub --algo ppo --env CartPole-v1 -orga sb3 -f logs/
32
+ python enjoy --algo ppo --env CartPole-v1 -f logs/
33
+ ```
34
+
35
+ ## Training (with the RL Zoo)
36
+ ```
37
+ python train.py --algo ppo --env CartPole-v1 -f logs/
38
+ # Upload the model and generate video (when possible)
39
+ python -m utils.push_to_hub --algo ppo --env CartPole-v1 -f logs/ -orga sb3
40
+ ```
args.yml ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - ppo
4
+ - - device
5
+ - auto
6
+ - - env
7
+ - CartPole-v1
8
+ - - env_kwargs
9
+ - null
10
+ - - eval_episodes
11
+ - 5
12
+ - - eval_freq
13
+ - 25000
14
+ - - gym_packages
15
+ - []
16
+ - - hyperparams
17
+ - null
18
+ - - log_folder
19
+ - logs
20
+ - - log_interval
21
+ - -1
22
+ - - n_eval_envs
23
+ - 1
24
+ - - n_evaluations
25
+ - null
26
+ - - n_jobs
27
+ - 1
28
+ - - n_startup_trials
29
+ - 10
30
+ - - n_timesteps
31
+ - -1
32
+ - - n_trials
33
+ - 500
34
+ - - no_optim_plots
35
+ - false
36
+ - - num_threads
37
+ - -1
38
+ - - optimization_log_path
39
+ - null
40
+ - - optimize_hyperparameters
41
+ - false
42
+ - - pruner
43
+ - median
44
+ - - sampler
45
+ - tpe
46
+ - - save_freq
47
+ - -1
48
+ - - save_replay_buffer
49
+ - false
50
+ - - seed
51
+ - 2841983177
52
+ - - storage
53
+ - null
54
+ - - study_name
55
+ - null
56
+ - - tensorboard_log
57
+ - ''
58
+ - - track
59
+ - false
60
+ - - trained_agent
61
+ - ''
62
+ - - truncate_last_trajectory
63
+ - true
64
+ - - uuid
65
+ - false
66
+ - - vec_env
67
+ - dummy
68
+ - - verbose
69
+ - 1
70
+ - - wandb_entity
71
+ - null
72
+ - - wandb_project_name
73
+ - sb3
config.yml ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - batch_size
3
+ - 256
4
+ - - clip_range
5
+ - lin_0.2
6
+ - - ent_coef
7
+ - 0.0
8
+ - - gae_lambda
9
+ - 0.8
10
+ - - gamma
11
+ - 0.98
12
+ - - learning_rate
13
+ - lin_0.001
14
+ - - n_envs
15
+ - 8
16
+ - - n_epochs
17
+ - 20
18
+ - - n_steps
19
+ - 32
20
+ - - n_timesteps
21
+ - 100000.0
22
+ - - policy
23
+ - MlpPolicy
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
ppo-CartPole-v1.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4ff88878f7cd991f849a6483ba151c1b833f2bf86435bd6fdde3928440501c0e
3
+ size 138643
ppo-CartPole-v1/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.1a6
ppo-CartPole-v1/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5bd7db9cb0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5bd7db9d40>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5bd7db9dd0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5bd7db9e60>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f5bd7db9ef0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f5bd7db9f80>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5bd7dc1050>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f5bd7dc10e0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5bd7dc1170>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5bd7dc1200>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5bd7dc1290>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f5bd7e0d6c0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVdwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAACamZnA//9//1B31r7//3//lGgKSwSFlIwBQ5R0lFKUjARoaWdolGgSKJYQAAAAAAAAAJqZmUD//39/UHfWPv//f3+UaApLBIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYEAAAAAAAAAAEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYEAAAAAAAAAAEBAQGUaCFLBIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 4
29
+ ],
30
+ "low": "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]",
31
+ "high": "[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]",
32
+ "bounded_below": "[ True True True True]",
33
+ "bounded_above": "[ True True True True]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVLwsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLAowGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAAAAAgFPCs5yHA7WTcuyrW+jmsvLPtoHa1QbvYaExTaBrtczZE+YYn3SceS/IpRuAxHkBSZ4PQ+Rd4BiTkhNVzNRKKWTSCJW+NNCeRHJ6A/Ctvwpzm3s+6WCxBtp1A0ULbn3WFmrrBDRmg7fz9aUvae9CY0O1XPfCd1LMRkQ3LQiJbtCOrnf7GLaAT3ue+U8y7BLYuY5ehakZyq49di1nK0KAnsXuxx/1IgFdS88kD8wZUmREV5hwnQr1Ehe16VreO8T/Qc86sV+2h90z2FiJqqLNf3s/yZS3bA9DHzGZfRtgkKu3Bx0ZTN7I+466APXPqRreJf4gBqUW/NB248FO9cpD0wFaed9QV63NqpiFOs/RYeEwD8e32dZFRfi9SK5aLvuApJMu2LOfZweypHIkyPjeY5W+tsm2bdPmVoCAOiyi73cf5k0LQeJNWqZU/wuy/f8myghZ9qrjf+2JSJMaB9VNMXWmxuq4Dq0fkhzJr1ML7SgftfSG29O5koFUMozQL58gAzyX96ZMcpWbZ+3/zlaVhGln5egXC8MtIK6xIFCvh/vD/F1jLgYIp14MM597MuPmTpa+OaKek7bql9Cp8/0skhg5QSCvCaijm8wenxrfqLyRxDPCpS+L3isJC5LrjFgWnsdxQXVrJK8uaobJcTIJ5NrYYfA2l5gH27iPI9EqhzFtZJXiE4vXpH18f3kouYV9RowPzOtmYsbmstR/Mx/VY7E0XBmnMidL4dYTUXgxaDbFxWy3y6miL2yw0I2O09vPWV7LqbwMbthlU26lrLfnJDz88B+7y4pFCwvsHgCsMWq6pvroAF4Ms+++JnhzrL0GLrtfJ7667p42Vg78GirmKIRMFH0p6aLRPV4V/fclE3PLBj0InU315M5v7fDFj/IreJeFUhIAy5/BlvLdgwIfBMBWvyjhqGRBo2KmdiDAO9BPhdi6oGmZUCxTDjUyMd8rjeRdntTE+L9sHQUSvUfpRjKcSIjZXcjsMMSwwU0QzIXewD4nZg8EAZ72iHnChWveW7cB5EQRFE+YPvvyNAw4OvORF+DjDtmLUz6jNz0JbkuKbhIQEEVbpDRkoeIGA4HATymZeE4TX/hvhOxJfX5liXD9/Uon8OjJ/hhIrDNUYR2NOV2R1L+VuK/JA9o0izGPiCC9vi7UK1u4re8tvPrBInC6BH2DpMvWSRepdH0frFxGsH/kRB/S77USeMs38a+yorDaa9Wsb9WnuQg10vl087jhvwSZx77fGq52NV1h/UnZAjnqJOjCPBgQrY0wsSeSW6SOSdItAOupiWkVvSzHz+gopd/3FUUPbjdik7Vd6O6ycGOFwp4+wyZqq1MKHww5exJND6De8NB4fGBzsvKoT8O1fAC3Y2Z+3mLYwkCJXULx2zNSO90bQi0L0BhTF1AidNtqRkak72V+V1kos6m4F+kyZiOiwxfcHKWHmpQe3A8HpX6nacx0Zso0WyF/W/sOLo//2g0YD9koIjgKvw//f9Em4CvxNBUMnJYTVQJGysF4QMShnM6byaMNJhRVALf+X0+SgLJkEwLfKdBbKxjA035OEc2YKmUpvooVUUt+9U8d7cKRgNYKKPwCHyYfLJSQt4ZEdThgjeywDxgsGzPax5SklOLroSYn39feofatZDzJXevfPTHyi1ZLwpe6Hwkbqz1FuOnHiShPedbEA9b/HCtBytSZrgUwlwHpQlAiBTSxpN7TFzVZrrhRd6N8W+FeE9SAGCHwXchFR4SCGThPyRGO/XWkMPJ42BLUOmMGepDQgWH646tjoJSE3EXcA5iDS+Nq6Oh521oC2UPAnvxIj1QbVh8IbxlBytRTTjc0c14E9cyhIPlgIoHriuEFSMXSEzOGL1MmL6UCbiXfsRg9Z6OwWCCl3VeGg5bEZ1kjJkvs08k7wtPk4ATAjaTL3QoY2gf106zFbJtL4D5gmLMJ9OuzE2Fn5uaAqqpjXIqqEXxS9jtpsRU9VTHCg68RwXQVIUhuVJgHq8fOigBMrW7Am5+jjo/GNNlcFcp813dFiXy4qHhjGSEjNXp3ln03NZkOgqXQ8SalJlPOvyrAS9wW9EtjQKhcrBSWSsQ8C3o/Mc/sR/CMRB85ZIojR/tiCKtOutxQMIusIOnYHK8g6kPpTQ8J/PfJ8pa3GEoYoA67axQTXsysd2Y6ZDwpz1HkAeISVK2AlCcuQssrQv8dVLAcins/2kjRFp5Vp82HSX9j6Ci9GH5mkdyqV84vWsdwRz4JNXHZoHVZKnrxSdA1HUwRUI/5oWiqnGk9KyiS4Mv9dQIVluJ1+/pAHYEdG9YgLHiNE2zA7aIQbqqlGX6jH1CrHSPL9mnlHdPiKjozwRXu02UQuzlGJn+/PUkU6cPYLLeLc8e7S2qfCZxbdpHioand7wYKqb5bMb8dA3Dwvm6P6iJXSogJ+Q+0z43li8ydYJqZNZlSjsljr/2c5UU33vMhLDLEXIHT8WzrsS45TsKNbhYfTYx6Ds/8W5yOtiOPWc0+fRlAjbQC++FKo5UaMl2eRCxI4U5/heX2HxJGNk50rICjuFsG/8Q+NUuJgS+y3FMhe+sm1e2MdC+ldkBqEn8oRxajECbP4Wizz1tfJliW/1A5fdGTfUxM3HV72bJgnqswmoAumAx6d36KfuZwEEp0/wcrdo+8/unJ5f2mYeqCrOcaxDJrs6SxW1zVaH/YTZl+RNA0NjPLgaqnlveaes/MkpzsVEQDtvKGFrG1cnmGjZVi2azrSDGQ0Y423nEksDC5awYcOJmVYbeA4DkMSNfj+7Dx2SzH/PVPuXLX9aw9K9QF4Ml48zsSrwsVjIa8+gIdffs2pf2wCKcPtFez6vOT0UDuFHknJjMDg0fI3DnyC7jJqO8V4XpmPyarTp3JJRGhmqTHhpZInn70JMfS+RFry5+rLSOM0T+KWV8fYjs9eyCiZijlR4AiADooXm9G8JIzZCLZX2Dty83iyz7gQzSxYO7ULuTT1stvGuJwbBP4LMhLXkbxdhAmBSDiYNOnc3O+yFsO6Ps9UOQD8S4Pbr8hZ4mFjbicpO635SwpmHINYDeuewln3/GHz69LpCjmpnKPeF9ZxXcq6MR4kJUV2j/dQzqjLniNaQmrMkULdI7W1sMXRFcsz9xs1GVwVqmtMVws8HtvXMYNmosCrrgAFX2ghPz7dXCV6vML5YhfNbDAzzG6MHffrslrhMav3vtlt8Fnld4VaH6IhMkowayT1lSVvfvlKHCWwtKaTcOZrR5LZGalJOpFbVIFUOAo+LnY/25bmc3KloyLzgiTudjPsXEGPNPBIvE/5cMEvU4Lrs0N3tCke4abYDXF9f14QrwLlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
39
+ "n": 2,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": "RandomState(MT19937)"
43
+ },
44
+ "n_envs": 8,
45
+ "num_timesteps": 55520,
46
+ "_total_timesteps": 100000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": 0,
49
+ "action_noise": null,
50
+ "start_time": 1652999284.6623607,
51
+ "learning_rate": {
52
+ ":type:": "<class 'function'>",
53
+ ":serialized:": "gAWVIgMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsCSxNDCHwAiAAUAFMAlIyECiAgICAgICAgUHJvZ3Jlc3Mgd2lsbCBkZWNyZWFzZSBmcm9tIDEgKGJlZ2lubmluZykgdG8gMAogICAgICAgIDpwYXJhbSBwcm9ncmVzc19yZW1haW5pbmc6IChmbG9hdCkKICAgICAgICA6cmV0dXJuOiAoZmxvYXQpCiAgICAgICAglIWUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjDgvaG9tZS9hbnRvbmluL0RvY3VtZW50cy9kbHIvcmwvdG9yY2h5LXpvby91dGlscy91dGlscy5weZSMBGZ1bmOUTQoBQwIABpSMDWluaXRpYWxfdmFsdWWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjAV1dGlsc5SMCF9fbmFtZV9flIwLdXRpbHMudXRpbHOUjAhfX2ZpbGVfX5RoDnVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgYaA+MDF9fcXVhbG5hbWVfX5SMHWxpbmVhcl9zY2hlZHVsZS48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UKIwScHJvZ3Jlc3NfcmVtYWluaW5nlIwIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgtdYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UaAqMC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
54
+ },
55
+ "tensorboard_log": null,
56
+ "lr_schedule": {
57
+ ":type:": "<class 'function'>",
58
+ ":serialized:": "gAWVIgMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsCSxNDCHwAiAAUAFMAlIyECiAgICAgICAgUHJvZ3Jlc3Mgd2lsbCBkZWNyZWFzZSBmcm9tIDEgKGJlZ2lubmluZykgdG8gMAogICAgICAgIDpwYXJhbSBwcm9ncmVzc19yZW1haW5pbmc6IChmbG9hdCkKICAgICAgICA6cmV0dXJuOiAoZmxvYXQpCiAgICAgICAglIWUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjDgvaG9tZS9hbnRvbmluL0RvY3VtZW50cy9kbHIvcmwvdG9yY2h5LXpvby91dGlscy91dGlscy5weZSMBGZ1bmOUTQoBQwIABpSMDWluaXRpYWxfdmFsdWWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjAV1dGlsc5SMCF9fbmFtZV9flIwLdXRpbHMudXRpbHOUjAhfX2ZpbGVfX5RoDnVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgYaA+MDF9fcXVhbG5hbWVfX5SMHWxpbmVhcl9zY2hlZHVsZS48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UKIwScHJvZ3Jlc3NfcmVtYWluaW5nlIwIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgtdYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UaAqMC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
59
+ },
60
+ "_last_obs": null,
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVewAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlC4="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": 0.44704,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVKgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQF5AAAAAAACMAWyUS3mMAXSUR0ARNvNu+AVgdX2UKGgGR0BhYAAAAAAAaAdLi2gIR0ARg7eVLSNPdX2UKGgGR0BgIAAAAAAAaAdLgWgIR0ASAzrNW2gGdX2UKGgGR0BjQAAAAAAAaAdLmmgIR0ASRt52Qnx8dX2UKGgGR0BgoAAAAAAAaAdLhWgIR0ASRjy4FzMidX2UKGgGR0BiYAAAAAAAaAdLk2gIR0ASUOQQtjCpdX2UKGgGR0BhwAAAAAAAaAdLjmgIR0ASUaCL/CIldX2UKGgGR0BkwAAAAAAAaAdLpmgIR0ASlLqUu+RHdX2UKGgGR0BmgAAAAAAAaAdLtGgIR0ASk7jkuHvddX2UKGgGR0Bg4AAAAAAAaAdLh2gIR0ASnDQ7cO9WdX2UKGgGR0BhQAAAAAAAaAdLimgIR0ATHVOKwY+CdX2UKGgGR0BlIAAAAAAAaAdLqWgIR0AT5ITXarWAdX2UKGgGR0BpAAAAAAAAaAdLyGgIR0AT6Y0EX+ERdX2UKGgGR0BpAAAAAAAAaAdLyGgIR0AT86ZH/cWTdX2UKGgGR0BqwAAAAAAAaAdL1mgIR0AUcVN5+pfhdX2UKGgGR0BrgAAAAAAAaAdL3GgIR0AU/QyAQQMAdX2UKGgGR0BzkAAAAAAAaAdNOQFoCEdAFUFWGRFI/nV9lChoBkdAdpAAAAAAAGgHTWkBaAhHQBVA/HHWBjF1fZQoaAZHQGBAAAAAAABoB0uCaAhHQBWD3mFJxvN1fZQoaAZHQGhgAAAAAABoB0vDaAhHQBWBtxdY4hl1fZQoaAZHQHYgAAAAAABoB01iAWgIR0AVxWHUMG5ddX2UKGgGR0BtYAAAAAAAaAdL62gIR0AVzrQgLZzxdX2UKGgGR0BrwAAAAAAAaAdL3mgIR0AV0kLQXyiFdX2UKGgGR0BaAAAAAAAAaAdLaGgIR0AWn73wkPc0dX2UKGgGR0BjQAAAAAAAaAdLmmgIR0AW5II4VARkdX2UKGgGR0BiYAAAAAAAaAdLk2gIR0AXIieNDMNddX2UKGgGR0Bu4AAAAAAAaAdL92gIR0AXa4TbnHNpdX2UKGgGR0B1sAAAAAAAaAdNWwFoCEdAF+lVtGd7OXV9lChoBkdAfAAAAAAAAGgHTcABaAhHQBj9eUpuuRt1fZQoaAZHQHwQAAAAAABoB03BAWgIR0AZQdlum78OdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAGUz/ZM+NcXV9lChoBkdAc9AAAAAAAGgHTT0BaAhHQBnNVaOgg5l1fZQoaAZHQG1gAAAAAABoB0vraAhHQBnPexfOUt91fZQoaAZHQHYQAAAAAABoB01hAWgIR0AZ1iw0O3DvdX2UKGgGR0B9EAAAAAAAaAdN0QFoCEdAGpuV5a/yoXV9lChoBkdAeOAAAAAAAGgHTY4BaAhHQBrdFfAsTWZ1fZQoaAZHQHGQAAAAAABoB00ZAWgIR0Abp4jbBXS0dX2UKGgGR0BzYAAAAAAAaAdNNgFoCEdAG6azNUwSJ3V9lChoBkdAbOAAAAAAAGgHS+doCEdAG7CDEm6XjXV9lChoBkdAcwAAAAAAAGgHTTABaAhHQB8I3zcynDR1fZQoaAZHQHHQAAAAAABoB00dAWgIR0AfUCDEm6XjdX2UKGgGR0ByIAAAAAAAaAdNIgFoCEdAH1u0CzTnaHV9lChoBkdAcCAAAAAAAGgHTQIBaAhHQB/yKekHlfZ1fZQoaAZHQHlQAAAAAABoB02VAWgIR0AhBlHz6JqJdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAIhChnJ1aGHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQCIQht+Csfd1fZQoaAZHQH9AAAAAAABoB030AWgIR0AiPkupS75EdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAIklmvnr6cnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQCJ9YdQwbl11fZQoaAZHQH9AAAAAAABoB030AWgIR0AiqtaIN3GGdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAIwxkd3jdYXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQCQWz6ab4Jx1fZQoaAZHQH9AAAAAAABoB030AWgIR0AlSCWeHzpYdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAJUgNPP9k0HV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQCVPokiUxEh1fZQoaAZHQH9AAAAAAABoB030AWgIR0AlfhNM495hdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAJa9CNS619nV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQCXcsvqTr3V1fZQoaAZHQH9AAAAAAABoB030AWgIR0AmGEtdzGPxdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAJ0b0WdmQKnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQChNCgK4QSV1fZQoaAZHQH9AAAAAAABoB030AWgIR0AoTPAO8TSLdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAKHqhDgIhQnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQCisABDG96F1fZQoaAZHQH9AAAAAAABoB030AWgIR0Ao31cMVk+YdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAKOeqBEroXHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQClHVbzK9wp1fZQoaAZHQH9AAAAAAABoB030AWgIR0AqVdnCfpUxdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAK4msNlRP43V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQCuJjUd7v5R1fZQoaAZHQH9AAAAAAABoB030AWgIR0ArtjABT4tZdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAK8FFUhmoSHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQCvz/yXlbNd1fZQoaAZHQH9AAAAAAABoB030AWgIR0AsImpEQXhwdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdALITrE9+w1XV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQC2HOryUcGV1fZQoaAZHQH9AAAAAAABoB030AWgIR0Ausd1+y7f6dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdALrHCfpUxVXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQC65b+tKZlZ1fZQoaAZHQH9AAAAAAABoB030AWgIR0Au6gqVhTfjdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdALxzUqhDgInV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQC9K+N96Tnt1fZQoaAZHQH9AAAAAAABoB030AWgIR0AvhN4Z/CqIdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAMFcWO6unuXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDDa+ueSSvF1fZQoaAZHQH9AAAAAAABoB030AWgIR0Aw2u1WsA/+dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAMPGuLaVUuXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDEJYSxqwhZ1fZQoaAZHQH9AAAAAAABoB030AWgIR0AxIcTJyQxOdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAMSWxptaY/nV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDJnqGDcuap1fZQoaAZHQH9AAAAAAABoB030AWgIR0Ay1S5RTCLudX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAM2HFHavicXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDNht2s7uD11fZQoaAZHQH9AAAAAAABoB030AWgIR0AzZV7Qb+98dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAM3xesxO+I3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDOUAggX/HZ1fZQoaAZHQH9AAAAAAABoB030AWgIR0AzqU21lXijdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAM8UPpY9xInV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDRVvOyE+Pl1ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 4320,
79
+ "n_steps": 32,
80
+ "gamma": 0.98,
81
+ "gae_lambda": 0.8,
82
+ "ent_coef": 0.0,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 256,
86
+ "n_epochs": 20,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVIgMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsCSxNDCHwAiAAUAFMAlIyECiAgICAgICAgUHJvZ3Jlc3Mgd2lsbCBkZWNyZWFzZSBmcm9tIDEgKGJlZ2lubmluZykgdG8gMAogICAgICAgIDpwYXJhbSBwcm9ncmVzc19yZW1haW5pbmc6IChmbG9hdCkKICAgICAgICA6cmV0dXJuOiAoZmxvYXQpCiAgICAgICAglIWUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjDgvaG9tZS9hbnRvbmluL0RvY3VtZW50cy9kbHIvcmwvdG9yY2h5LXpvby91dGlscy91dGlscy5weZSMBGZ1bmOUTQoBQwIABpSMDWluaXRpYWxfdmFsdWWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjAV1dGlsc5SMCF9fbmFtZV9flIwLdXRpbHMudXRpbHOUjAhfX2ZpbGVfX5RoDnVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgYaA+MDF9fcXVhbG5hbWVfX5SMHWxpbmVhcl9zY2hlZHVsZS48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UKIwScHJvZ3Jlc3NfcmVtYWluaW5nlIwIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgtdYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UaAqMC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-CartPole-v1/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:caa748f40f9bd6d95aceff5cd8c0050ce1938ce35b9189df23290d49e9c273ff
3
+ size 79453
ppo-CartPole-v1/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:14a6dbfaa44709a5ef7956e638b072692e3f4f8d61a9bd8511ed1180cceb23af
3
+ size 40513
ppo-CartPole-v1/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-CartPole-v1/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.0-110-generic-x86_64-with-debian-bullseye-sid #124-Ubuntu SMP Thu Apr 14 19:46:19 UTC 2022
2
+ Python: 3.7.12
3
+ Stable-Baselines3: 1.5.1a6
4
+ PyTorch: 1.11.0+cpu
5
+ GPU Enabled: False
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6bf6ce06ed9027d759b738e6730065904916b5566eb29a882b9bbcf9fcae7f75
3
+ size 54701
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 500.0, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-20T00:36:21.848006"}