Initial commit
Browse files- .gitattributes +1 -0
- README.md +62 -0
- args.yml +65 -0
- config.yml +17 -0
- env_kwargs.yml +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- train_eval_metrics.zip +3 -0
- trpo-Pendulum-v1.zip +3 -0
- trpo-Pendulum-v1/_stable_baselines3_version +1 -0
- trpo-Pendulum-v1/data +96 -0
- trpo-Pendulum-v1/policy.optimizer.pth +3 -0
- trpo-Pendulum-v1/policy.pth +3 -0
- trpo-Pendulum-v1/pytorch_variables.pth +3 -0
- trpo-Pendulum-v1/system_info.txt +7 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- Pendulum-v1
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: TRPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: -224.04 +/- 139.76
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: Pendulum-v1
|
20 |
+
type: Pendulum-v1
|
21 |
+
---
|
22 |
+
|
23 |
+
# **TRPO** Agent playing **Pendulum-v1**
|
24 |
+
This is a trained model of a **TRPO** agent playing **Pendulum-v1**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
|
26 |
+
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
|
27 |
+
|
28 |
+
The RL Zoo is a training framework for Stable Baselines3
|
29 |
+
reinforcement learning agents,
|
30 |
+
with hyperparameter optimization and pre-trained agents included.
|
31 |
+
|
32 |
+
## Usage (with SB3 RL Zoo)
|
33 |
+
|
34 |
+
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
|
35 |
+
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
|
36 |
+
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
|
37 |
+
|
38 |
+
```
|
39 |
+
# Download model and save it into the logs/ folder
|
40 |
+
python -m utils.load_from_hub --algo trpo --env Pendulum-v1 -orga sb3 -f logs/
|
41 |
+
python enjoy.py --algo trpo --env Pendulum-v1 -f logs/
|
42 |
+
```
|
43 |
+
|
44 |
+
## Training (with the RL Zoo)
|
45 |
+
```
|
46 |
+
python train.py --algo trpo --env Pendulum-v1 -f logs/
|
47 |
+
# Upload the model and generate video (when possible)
|
48 |
+
python -m utils.push_to_hub --algo trpo --env Pendulum-v1 -f logs/ -orga sb3
|
49 |
+
```
|
50 |
+
|
51 |
+
## Hyperparameters
|
52 |
+
```python
|
53 |
+
OrderedDict([('gamma', 0.9),
|
54 |
+
('n_critic_updates', 15),
|
55 |
+
('n_envs', 2),
|
56 |
+
('n_steps', 1024),
|
57 |
+
('n_timesteps', 100000.0),
|
58 |
+
('policy', 'MlpPolicy'),
|
59 |
+
('sde_sample_freq', 4),
|
60 |
+
('use_sde', True),
|
61 |
+
('normalize', False)])
|
62 |
+
```
|
args.yml
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - algo
|
3 |
+
- trpo
|
4 |
+
- - env
|
5 |
+
- Pendulum-v0
|
6 |
+
- - env_kwargs
|
7 |
+
- null
|
8 |
+
- - eval_episodes
|
9 |
+
- 20
|
10 |
+
- - eval_freq
|
11 |
+
- 10000
|
12 |
+
- - gym_packages
|
13 |
+
- []
|
14 |
+
- - hyperparams
|
15 |
+
- null
|
16 |
+
- - log_folder
|
17 |
+
- logs
|
18 |
+
- - log_interval
|
19 |
+
- -1
|
20 |
+
- - n_eval_envs
|
21 |
+
- 10
|
22 |
+
- - n_evaluations
|
23 |
+
- 20
|
24 |
+
- - n_jobs
|
25 |
+
- 1
|
26 |
+
- - n_startup_trials
|
27 |
+
- 10
|
28 |
+
- - n_timesteps
|
29 |
+
- -1
|
30 |
+
- - n_trials
|
31 |
+
- 10
|
32 |
+
- - no_optim_plots
|
33 |
+
- false
|
34 |
+
- - num_threads
|
35 |
+
- -1
|
36 |
+
- - optimization_log_path
|
37 |
+
- null
|
38 |
+
- - optimize_hyperparameters
|
39 |
+
- false
|
40 |
+
- - pruner
|
41 |
+
- median
|
42 |
+
- - sampler
|
43 |
+
- tpe
|
44 |
+
- - save_freq
|
45 |
+
- -1
|
46 |
+
- - save_replay_buffer
|
47 |
+
- false
|
48 |
+
- - seed
|
49 |
+
- 843550859
|
50 |
+
- - storage
|
51 |
+
- null
|
52 |
+
- - study_name
|
53 |
+
- null
|
54 |
+
- - tensorboard_log
|
55 |
+
- ''
|
56 |
+
- - trained_agent
|
57 |
+
- ''
|
58 |
+
- - truncate_last_trajectory
|
59 |
+
- true
|
60 |
+
- - uuid
|
61 |
+
- false
|
62 |
+
- - vec_env
|
63 |
+
- dummy
|
64 |
+
- - verbose
|
65 |
+
- 1
|
config.yml
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - gamma
|
3 |
+
- 0.9
|
4 |
+
- - n_critic_updates
|
5 |
+
- 15
|
6 |
+
- - n_envs
|
7 |
+
- 2
|
8 |
+
- - n_steps
|
9 |
+
- 1024
|
10 |
+
- - n_timesteps
|
11 |
+
- 100000.0
|
12 |
+
- - policy
|
13 |
+
- MlpPolicy
|
14 |
+
- - sde_sample_freq
|
15 |
+
- 4
|
16 |
+
- - use_sde
|
17 |
+
- true
|
env_kwargs.yml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7e023a36e975bc1323fb41e923d005544165f31620a3db3c203b9c3d188734af
|
3 |
+
size 116399
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -224.0432834, "std_reward": 139.76101055784463, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-06-02T13:04:15.114836"}
|
train_eval_metrics.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fb623c61a62908191ff84bdfe5bf9f1f97e5da6d6f3c72f77d72c91d55aeca80
|
3 |
+
size 17884
|
trpo-Pendulum-v1.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7f19b1e71694eb10d8a344c65eff268a0c338d653c0c76862e1b1b7627d172ef
|
3 |
+
size 97640
|
trpo-Pendulum-v1/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.1a8
|
trpo-Pendulum-v1/data
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f6faf570950>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6faf5709e0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6faf570a70>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6faf570b00>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f6faf570b90>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f6faf570c20>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6faf570cb0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f6faf570d40>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6faf570dd0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6faf570e60>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6faf570ef0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f6faf5c1840>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gASVkQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwOFlGgKiUMMAACAvwAAgL8AAADBlHSUYowEaGlnaJRoEGgSSwCFlGgUh5RSlChLAUsDhZRoColDDAAAgD8AAIA/AAAAQZR0lGKMDWJvdW5kZWRfYmVsb3eUaBBoEksAhZRoFIeUUpQoSwFLA4WUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQwMBAQGUdJRijA1ib3VuZGVkX2Fib3ZllGgQaBJLAIWUaBSHlFKUKEsBSwOFlGgoiUMDAQEBlHSUYowKX25wX3JhbmRvbZROjAZfc2hhcGWUSwOFlHViLg==",
|
26 |
+
"dtype": "float32",
|
27 |
+
"low": "[-1. -1. -8.]",
|
28 |
+
"high": "[1. 1. 8.]",
|
29 |
+
"bounded_below": "[ True True True]",
|
30 |
+
"bounded_above": "[ True True True]",
|
31 |
+
"_np_random": null,
|
32 |
+
"_shape": [
|
33 |
+
3
|
34 |
+
]
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
38 |
+
":serialized:": "gASVCwwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwGFlGgKiUMEAAAAwJR0lGKMBGhpZ2iUaBBoEksAhZRoFIeUUpQoSwFLAYWUaAqJQwQAAABAlHSUYowNYm91bmRlZF9iZWxvd5RoEGgSSwCFlGgUh5RSlChLAUsBhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAQGUdJRijA1ib3VuZGVkX2Fib3ZllGgQaBJLAIWUaBSHlFKUKEsBSwGFlGgoiWgrdJRijApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpRoN4wFc3RhdGWUfZQojANrZXmUaBBoEksAhZRoFIeUUpQoSwFNcAKFlGgHjAJ1NJSJiIeUUpQoSwNoC05OTkr/////Sv////9LAHSUYolCwAkAAAAAAIBTwrOchwO1k3Lsq1vo5rLyz7aB2tUG72GhMU2ga7XM2RPmGJ90nHkvyKUbgMR5AUmeD0PkXeAYk5ITVczUSilk0giVvjTQnkRyegPwrb8Kc5t7PulgsQbadQNFC2591hZq6wQ0ZoO38/WlL2nvQmNDtVz3wndSzEZENy0IiW7Qjq53+xi2gE97nvlPMuwS2LmOXoWpGcquPXYtZytCgJ7F7scf9SIBXUvPJA/MGVJkRFeYcJ0K9RIXtela3jvE/0HPOrFftofdM9hYiaqizX97P8mUt2wPQx8xmX0bYJCrtwcdGUzeyPuOugD1z6ka3iX+IAalFvzQduPBTvXKQ9MBWnnfUFetzaqYhTrP0WHhMA/Ht9nWRUX4vUiuWi77gKSTLtizn2cHsqRyJMj43mOVvrbJtm3T5laAgDosou93H+ZNC0HiTVqmVP8Lsv3/JsoIWfaq43/tiUiTGgfVTTF1psbquA6tH5Icya9TC+0oH7X0htvTuZKBVDKM0C+fIAM8l/emTHKVm2ft/85WlYRpZ+XoFwvDLSCusSBQr4f7w/xdYy4GCKdeDDOfezLj5k6WvjminpO26pfQqfP9LJIYOUEgrwmoo5vMHp8a36i8kcQzwqUvi94rCQuS64xYFp7HcUF1aySvLmqGyXEyCeTa2GHwNpeYB9u4jyPRKocxbWSV4hOL16R9fH95KLmFfUaMD8zrZmLG5rLUfzMf1WOxNFwZpzInS+HWE1F4MWg2xcVst8upoi9ssNCNjtPbz1ley6m8DG7YZVNupay35yQ8/PAfu8uKRQsL7B4ArDFquqb66ABeDLPvviZ4c6y9Bi67Xye+uu6eNlYO/Boq5iiETBR9Kemi0T1eFf33JRNzywY9CJ1N9eTOb+3wxY/yK3iXhVISAMufwZby3YMCHwTAVr8o4ahkQaNipnYgwDvQT4XYuqBpmVAsUw41MjHfK43kXZ7UxPi/bB0FEr1H6UYynEiI2V3I7DDEsMFNEMyF3sA+J2YPBAGe9oh5woVr3lu3AeREERRPmD778jQMODrzkRfg4w7Zi1M+ozc9CW5Lim4SEBBFW6Q0ZKHiBgOBwE8pmXhOE1/4b4TsSX1+ZYlw/f1KJ/Doyf4YSKwzVGEdjTldkdS/lbivyQPaNIsxj4ggvb4u1CtbuK3vLbz6wSJwugR9g6TL1kkXqXR9H6xcRrB/5EQf0u+1EnjLN/GvsqKw2mvVrG/Vp7kINdL5dPO44b8Emce+3xqudjVdYf1J2QI56iTowjwYEK2NMLEnklukjknSLQDrqYlpFb0sx8/oKKXf9xVFD243YpO1XejusnBjhcKePsMmaqtTCh8MOXsSTQ+g3vDQeHxgc7LyqE/DtXwAt2Nmft5i2MJAiV1C8dszUjvdG0ItC9AYUxdQInTbakZGpO9lfldZKLOpuBfpMmYjosMX3Bylh5qUHtwPB6V+p2nMdGbKNFshf1v7Di6P/9oNGA/ZKCI4Cr8P/3/RJuAr8TQVDJyWE1UCRsrBeEDEoZzOm8mjDSYUVQC3/l9PkoCyZBMC3ynQWysYwNN+ThHNmCplKb6KFVFLfvVPHe3CkYDWCij8Ah8mHyyUkLeGRHU4YI3ssA8YLBsz2seUpJTi66EmJ9/X3qH2rWQ8yV3r3z0x8otWS8KXuh8JG6s9Rbjpx4koT3nWxAPW/xwrQcrUma4FMJcB6UJQIgU0saTe0xc1Wa64UXejfFvhXhPUgBgh8F3IRUeEghk4T8kRjv11pDDyeNgS1DpjBnqQ0IFh+uOrY6CUhNxF3AOYg0vjaujoedtaAtlDwJ78SI9UG1YfCG8ZQcrUU043NHNeBPXMoSD5YCKB64rhBUjF0hMzhi9TJi+lAm4l37EYPWejsFggpd1XhoOWxGdZIyZL7NPJO8LT5OAEwI2ky90KGNoH9dOsxWybS+A+YJizCfTrsxNhZ+bmgKqqY1yKqhF8UvY7abEVPVUxwoOvEcF0FSFIblSYB6vHzooATK1uwJufo46PxjTZXBXKfNd3RYl8uKh4YxkhIzV6d5Z9NzWZDoKl0PEmpSZTzr8qwEvcFvRLY0CoXKwUlkrEPAt6PzHP7EfwjEQfOWSKI0f7YgirTrrcUDCLrCDp2ByvIOpD6U0PCfz3yfKWtxhKGKAOu2sUE17MrHdmOmQ8Kc9R5AHiElStgJQnLkLLK0L/HVSwHIp7P9pI0RaeVafNh0l/Y+govRh+ZpHcqlfOL1rHcEc+CTVx2aB1WSp68UnQNR1MEVCP+aFoqpxpPSsokuDL/XUCFZbidfv6QB2BHRvWICx4jRNswO2iEG6qpRl+ox9Qqx0jy/Zp5R3T4io6M8EV7tNlELs5RiZ/vz1JFOnD2Cy3i3PHu0tqnwmcW3aR4qGp3e8GCqm+WzG/HQNw8L5uj+oiV0qICfkPtM+N5YvMnWCamTWZUo7JY6/9nOVFN97zISwyxFyB0/Fs67EuOU7CjW4WH02Meg7P/FucjrYjj1nNPn0ZQI20AvvhSqOVGjJdnkQsSOFOf4Xl9h8SRjZOdKyAo7hbBv/EPjVLiYEvstxTIXvrJtXtjHQvpXZAahJ/KEcWoxAmz+Fos89bXyZYlv9QOX3Rk31MTNx1e9myYJ6rMJqALpgMend+in7mcBBKdP8HK3aPvP7pyeX9pmHqgqznGsQya7OksVtc1Wh/2E2ZfkTQNDYzy4Gqp5b3mnrPzJKc7FREA7byhhaxtXJ5ho2VYtms60gxkNGONt5xJLAwuWsGHDiZlWG3gOA5DEjX4/uw8dksx/z1T7ly1/WsPSvUBeDJePM7Eq8LFYyGvPoCHX37NqX9sAinD7RXs+rzk9FA7hR5JyYzA4NHyNw58gu4yajvFeF6Zj8mq06dySURoZqkx4aWSJ5+9CTH0vkRa8ufqy0jjNE/illfH2I7PXsgomYo5UeAIgA6KF5vRvCSM2Qi2V9g7cvN4ss+4EM0sWDu1C7k09bLbxricGwT+CzIS15G8XYQJgUg4mDTp3NzvshbDuj7PVDkA/EuD26/IWeJhY24nKTut+UsKZhyDWA3rnsJZ9/xh8+vS6Qo5qZyj3hfWcV3KujEeJCVFdo/3UM6oy54jWkJqzJFC3SO1tbDF0RXLM/cbNRlcFaprTFcLPB7b1zGDZqLAq64ABV9oIT8+3VwlerzC+WIXzWwwM8xujB3367Ja4TGr977ZbfBZ5XeFWh+iITJKMGsk9ZUlb375ShwlsLSmk3Dma0eS2RmpSTqRW1SBVDgKPi52P9uW5nNypaMi84Ik7nYz7FxBjzTwSLxP+XDBL1OC67NDd7QpHuGm2A1xfX9eEK8C5R0lGKMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVijAZfc2hhcGWUSwGFlHViLg==",
|
39 |
+
"dtype": "float32",
|
40 |
+
"low": "[-2.]",
|
41 |
+
"high": "[2.]",
|
42 |
+
"bounded_below": "[ True]",
|
43 |
+
"bounded_above": "[ True]",
|
44 |
+
"_np_random": "RandomState(MT19937)",
|
45 |
+
"_shape": [
|
46 |
+
1
|
47 |
+
]
|
48 |
+
},
|
49 |
+
"n_envs": 2,
|
50 |
+
"num_timesteps": 100352,
|
51 |
+
"_total_timesteps": 100000,
|
52 |
+
"_num_timesteps_at_start": 0,
|
53 |
+
"seed": 0,
|
54 |
+
"action_noise": null,
|
55 |
+
"start_time": 1640703832.6538694,
|
56 |
+
"learning_rate": 0.001,
|
57 |
+
"tensorboard_log": null,
|
58 |
+
"lr_schedule": {
|
59 |
+
":type:": "<class 'function'>",
|
60 |
+
":serialized:": "gASVywIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxOL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvcmwvc3RhYmxlLWJhc2VsaW5lczMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxOL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvcmwvc3RhYmxlLWJhc2VsaW5lczMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
61 |
+
},
|
62 |
+
"_last_obs": null,
|
63 |
+
"_last_episode_starts": {
|
64 |
+
":type:": "<class 'numpy.ndarray'>",
|
65 |
+
":serialized:": "gASVigAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwKFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAgAAlHSUYi4="
|
66 |
+
},
|
67 |
+
"_last_original_obs": null,
|
68 |
+
"_episode_num": 0,
|
69 |
+
"use_sde": true,
|
70 |
+
"sde_sample_freq": 4,
|
71 |
+
"_current_progress_remaining": -0.0035199999999999676,
|
72 |
+
"ep_info_buffer": {
|
73 |
+
":type:": "<class 'collections.deque'>",
|
74 |
+
":serialized:": "gASVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQwBw7FkkYcCUhpRSlIwBbJRLyIwBdJRHQEYJqjafzz51fZQoaAZoCWgPQwjDKt7IfJNwwJSGlFKUaBVLyGgWR0BGCZUT+NtJdX2UKGgGaAloD0MIKy/5n/w9DsCUhpRSlGgVS8hoFkdARh3FFUhmoXV9lChoBmgJaA9DCEJ5H0dzQWHAlIaUUpRoFUvIaBZHQEYdsbedkJ91fZQoaAZoCWgPQwhtj95wn8dwwJSGlFKUaBVLyGgWR0BGMp+UhV2idX2UKGgGaAloD0MIwMsMG6W5cMCUhpRSlGgVS8hoFkdARjKKP4mCy3V9lChoBmgJaA9DCNfZkH9mgnPAlIaUUpRoFUvIaBZHQEZGWeHzpX91fZQoaAZoCWgPQwjAlIEDWnNwwJSGlFKUaBVLyGgWR0BGRkbxVhkRdX2UKGgGaAloD0MIgSVXsfj3csCUhpRSlGgVS8hoFkdARplWwNb1RXV9lChoBmgJaA9DCL4z2qrkE3fAlIaUUpRoFUvIaBZHQEaZRiw0O3F1fZQoaAZoCWgPQwgr2bERSHpwwJSGlFKUaBVLyGgWR0BGsj3ueBhAdX2UKGgGaAloD0MIww/Opw6OYcCUhpRSlGgVS8hoFkdARrIsXizcAXV9lChoBmgJaA9DCK0Yrg4AmmDAlIaUUpRoFUvIaBZHQEbNGrjo6jp1fZQoaAZoCWgPQwiiJ2VSQwxhwJSGlFKUaBVLyGgWR0BGzQjD8+A3dX2UKGgGaAloD0MIIXam0HkNE8CUhpRSlGgVS8hoFkdARuXj2i+L33V9lChoBmgJaA9DCAx3Loz0cHvAlIaUUpRoFUvIaBZHQEbl0TURWcV1fZQoaAZoCWgPQwjv5qkOOTGBwJSGlFKUaBVLyGgWR0BG/JKaoddWdX2UKGgGaAloD0MI3GYqxOPkeMCUhpRSlGgVS8hoFkdARvx95Qgs9XV9lChoBmgJaA9DCMXFUbkJamHAlIaUUpRoFUvIaBZHQEc+4OMERrd1fZQoaAZoCWgPQwi/1TpxOb4QwJSGlFKUaBVLyGgWR0BHPszEaVD8dX2UKGgGaAloD0MI7wOQ2oSpgcCUhpRSlGgVS8hoFkdAR1UuWa+ev3V9lChoBmgJaA9DCBU6r7ELB3HAlIaUUpRoFUvIaBZHQEdVGrCFbml1fZQoaAZoCWgPQwiiQ+BI4Kh4wJSGlFKUaBVLyGgWR0BHasvIwM6SdX2UKGgGaAloD0MIWaMeorGCgMCUhpRSlGgVS8hoFkdAR2q35N47inV9lChoBmgJaA9DCNv9KsC3DXHAlIaUUpRoFUvIaBZHQEeAg2ZRbbF1fZQoaAZoCWgPQwg/j1GemSeEwJSGlFKUaBVLyGgWR0BHgIGpuMuOdX2UKGgGaAloD0MIlpUmpeAegsCUhpRSlGgVS8hoFkdAR5YoNNJvpHV9lChoBmgJaA9DCHCyDdyBIF/AlIaUUpRoFUvIaBZHQEeWEvkBCD51fZQoaAZoCWgPQwjwUBToEz55wJSGlFKUaBVLyGgWR0BHqxx95QgtdX2UKGgGaAloD0MI41KVtjiLYMCUhpRSlGgVS8hoFkdAR6sHfMwDeXV9lChoBmgJaA9DCBbe5SLeHoTAlIaUUpRoFUvIaBZHQEfpg+hXbM51fZQoaAZoCWgPQwjCwkmaP+V5wJSGlFKUaBVLyGgWR0BH6W4d6sySdX2UKGgGaAloD0MITUusjEYgccCUhpRSlGgVS8hoFkdAR/0GeMAFPnV9lChoBmgJaA9DCH0jumfdlGHAlIaUUpRoFUvIaBZHQEf88PFvQ4V1fZQoaAZoCWgPQwjKGYo73ttdwJSGlFKUaBVLyGgWR0BIEEcKgIyCdX2UKGgGaAloD0MIWcFvQ4xHEcCUhpRSlGgVS8hoFkdASBAxFiKBNHV9lChoBmgJaA9DCDBJZYp5RHTAlIaUUpRoFUvIaBZHQEgjeWv8qF11fZQoaAZoCWgPQwjQ04BB0ltgwJSGlFKUaBVLyGgWR0BII2Lgn+hodX2UKGgGaAloD0MIEJGadjHhb8CUhpRSlGgVS8hoFkdASDYA4n4O+nV9lChoBmgJaA9DCIMyjSYXG2HAlIaUUpRoFUvIaBZHQEg16qKgqVh1fZQoaAZoCWgPQwhL5ljeVc5gwJSGlFKUaBVLyGgWR0BIcEs8PnSwdX2UKGgGaAloD0MI8fJ0rmgwesCUhpRSlGgVS8hoFkdASHA1gpjMFHV9lChoBmgJaA9DCHr83qa/1mDAlIaUUpRoFUvIaBZHQEiC3x4IKMN1fZQoaAZoCWgPQwh80okEU40LwJSGlFKUaBVLyGgWR0BIgslC1JDmdX2UKGgGaAloD0MI/wbt1cetcMCUhpRSlGgVS8hoFkdASJVwHZ9NOHV9lChoBmgJaA9DCHKHTWTmWWDAlIaUUpRoFUvIaBZHQEiVWdVea8Z1fZQoaAZoCWgPQwjPu7GgsCdhwJSGlFKUaBVLyGgWR0BIqAD7qIJrdX2UKGgGaAloD0MIH2lwW1vwb8CUhpRSlGgVS8hoFkdASKfqcEvCdnV9lChoBmgJaA9DCJROJJhq0mDAlIaUUpRoFUvIaBZHQEi6k7fYSQJ1fZQoaAZoCWgPQwg91SE3ww5hwJSGlFKUaBVLyGgWR0BIun31zySWdX2UKGgGaAloD0MIzR39L1drYMCUhpRSlGgVS8hoFkdASTSpgkTpPnV9lChoBmgJaA9DCKOutfcpgnDAlIaUUpRoFUvIaBZHQEk0lb/wRXh1fZQoaAZoCWgPQwjsEtVbgwNxwJSGlFKUaBVLyGgWR0BJSJAD7qIKdX2UKGgGaAloD0MIb7w7MpYTcMCUhpRSlGgVS8hoFkdASUh7Z39rGnV9lChoBmgJaA9DCGYxsfk4qnDAlIaUUpRoFUvIaBZHQEleajN6gNB1fZQoaAZoCWgPQwizJasinMB0wJSGlFKUaBVLyGgWR0BJXlev6j33dX2UKGgGaAloD0MIY7SOqmbFcMCUhpRSlGgVS8hoFkdASXxEYwZflnV9lChoBmgJaA9DCB+g+3Jm2xDAlIaUUpRoFUvIaBZHQEl8MWoFV1h1fZQoaAZoCWgPQwgPJsXHZ85wwJSGlFKUaBVLyGgWR0BJlLVe8f3fdX2UKGgGaAloD0MIfxZLkfwCcMCUhpRSlGgVS8hoFkdASZSx1PnB+HV9lChoBmgJaA9DCEpCIm0j8HHAlIaUUpRoFUvIaBZHQEne2VmjCYV1fZQoaAZoCWgPQwgsSZ7rOxFxwJSGlFKUaBVLyGgWR0BJ3sX7+DODdX2UKGgGaAloD0MIdlQ1QdRpYcCUhpRSlGgVS8hoFkdASflVxS5y2nV9lChoBmgJaA9DCJdTAmKS3WDAlIaUUpRoFUvIaBZHQEn5Q0oBq9J1fZQoaAZoCWgPQwiQ9dTqax12wJSGlFKUaBVLyGgWR0BKEFdLQHAzdX2UKGgGaAloD0MIcsPvpltHX8CUhpRSlGgVS8hoFkdAShBDPWxyGXV9lChoBmgJaA9DCBWQ9j9AanfAlIaUUpRoFUvIaBZHQEonxBmf5DZ1fZQoaAZoCWgPQwjcSNki6eVuwJSGlFKUaBVLyGgWR0BKJ7E5yU9qdX2UKGgGaAloD0MImlshrEa3YMCUhpRSlGgVS8hoFkdASj4phF3IMnV9lChoBmgJaA9DCB8Svve3bnHAlIaUUpRoFUvIaBZHQEo+FSsKb8Z1fZQoaAZoCWgPQwicU8kAEC1xwJSGlFKUaBVLyGgWR0BKf/p2U0N0dX2UKGgGaAloD0MIjpHsEapfcMCUhpRSlGgVS8hoFkdASn/ljmSyMXV9lChoBmgJaA9DCI6u0t31S3DAlIaUUpRoFUvIaBZHQEqUkX1rZap1fZQoaAZoCWgPQwiRt1z92OJgwJSGlFKUaBVLyGgWR0BKlH1nM+vAdX2UKGgGaAloD0MIdHy0OGNeYMCUhpRSlGgVS8hoFkdASqmBtk4FR3V9lChoBmgJaA9DCNEHy9iQmHbAlIaUUpRoFUvIaBZHQEqpbJOnEVF1fZQoaAZoCWgPQwh3TUhrjJpgwJSGlFKUaBVLyGgWR0BKvXko4MnadX2UKGgGaAloD0MI/8pKkxJaecCUhpRSlGgVS8hoFkdASr1lCkXUIHV9lChoBmgJaA9DCCRE+YKWgnDAlIaUUpRoFUvIaBZHQErVGG21D0F1fZQoaAZoCWgPQwgkgJvFy4VwwJSGlFKUaBVLyGgWR0BK1QgTyrggdX2UKGgGaAloD0MI3bQZpyH1YMCUhpRSlGgVS8hoFkdASxndyksSTXV9lChoBmgJaA9DCAB1AwVe2XDAlIaUUpRoFUvIaBZHQEsZyDqW1MN1fZQoaAZoCWgPQwhMNh5ssc9wwJSGlFKUaBVLyGgWR0BLLZhBqsU7dX2UKGgGaAloD0MIeQWiJ+UKZcCUhpRSlGgVS8hoFkdASy2EGqxTsXV9lChoBmgJaA9DCLoxPWEJxW7AlIaUUpRoFUvIaBZHQEtAxzq8lHB1fZQoaAZoCWgPQwhEF9S3TN5vwJSGlFKUaBVLyGgWR0BLQLKNhmXgdX2UKGgGaAloD0MIpkV9kjstYcCUhpRSlGgVS8hoFkdAS1PEGZ/kNnV9lChoBmgJaA9DCKOwi6KH8GDAlIaUUpRoFUvIaBZHQEtTrjYI0Il1fZQoaAZoCWgPQwjCvp1EhC8QwJSGlFKUaBVLyGgWR0BLZsN+b3GodX2UKGgGaAloD0MI58b0hCVeDMCUhpRSlGgVS8hoFkdAS2atvGZNPHV9lChoBmgJaA9DCB2s/3MYy2DAlIaUUpRoFUvIaBZHQEuh3SKFZgZ1fZQoaAZoCWgPQwjeVnptNmYQwJSGlFKUaBVLyGgWR0BLocfFJg9edX2UKGgGaAloD0MI6lp7n6rUbsCUhpRSlGgVS8hoFkdAS7SnBLwnY3V9lChoBmgJaA9DCDXxDvBkY3jAlIaUUpRoFUvIaBZHQEu0kOZssQN1fZQoaAZoCWgPQwiugEI9fZ5wwJSGlFKUaBVLyGgWR0BLxxXOnl4kdX2UKGgGaAloD0MIHT7pRALJYcCUhpRSlGgVS8hoFkdAS8cB4lhPTHV9lChoBmgJaA9DCGZK628J0mDAlIaUUpRoFUvIaBZHQEvah5gPVd51fZQoaAZoCWgPQwj7lc6HB22BwJSGlFKUaBVLyGgWR0BL2nSfDk2hdX2UKGgGaAloD0MIOWQD6eIQYcCUhpRSlGgVS8hoFkdAS+9ByCFsYXV9lChoBmgJaA9DCHIZNzXQQ2LAlIaUUpRoFUvIaBZHQEvvLt/nW8R1ZS4="
|
75 |
+
},
|
76 |
+
"ep_success_buffer": {
|
77 |
+
":type:": "<class 'collections.deque'>",
|
78 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
79 |
+
},
|
80 |
+
"_n_updates": 49,
|
81 |
+
"n_steps": 1024,
|
82 |
+
"gamma": 0.9,
|
83 |
+
"gae_lambda": 0.95,
|
84 |
+
"ent_coef": 0.0,
|
85 |
+
"vf_coef": 0.0,
|
86 |
+
"max_grad_norm": 0.0,
|
87 |
+
"normalize_advantage": true,
|
88 |
+
"batch_size": 128,
|
89 |
+
"cg_max_steps": 15,
|
90 |
+
"cg_damping": 0.1,
|
91 |
+
"line_search_shrinking_factor": 0.8,
|
92 |
+
"line_search_max_iter": 10,
|
93 |
+
"target_kl": 0.01,
|
94 |
+
"n_critic_updates": 15,
|
95 |
+
"sub_sampling_factor": 1
|
96 |
+
}
|
trpo-Pendulum-v1/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c117bc27065a28ec4a81ec2d79ff47af3e9a2d3dfffa4ab36c1ba932bc699344
|
3 |
+
size 39169
|
trpo-Pendulum-v1/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ae4f0c347f59157e5b1ca94971d88b0a9f21380b14f63532b0c16aa28291d38b
|
3 |
+
size 40382
|
trpo-Pendulum-v1/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
trpo-Pendulum-v1/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.13.0-44-generic-x86_64-with-debian-bullseye-sid #49~20.04.1-Ubuntu SMP Wed May 18 18:44:28 UTC 2022
|
2 |
+
Python: 3.7.10
|
3 |
+
Stable-Baselines3: 1.5.1a8
|
4 |
+
PyTorch: 1.11.0
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.2
|
7 |
+
Gym: 0.21.0
|