sho-takase
commited on
Commit
•
d6eef98
1
Parent(s):
5921f5a
add readme
Browse files
README.md
CHANGED
@@ -1,3 +1,68 @@
|
|
1 |
---
|
2 |
license: mit
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
+
language:
|
4 |
+
- ja
|
5 |
---
|
6 |
+
|
7 |
+
# Sarashina1-7B
|
8 |
+
|
9 |
+
This repository provides Japanese language models trained by [SB Intuitions](https://www.sbintuitions.co.jp/).
|
10 |
+
|
11 |
+
|
12 |
+
## How to use
|
13 |
+
|
14 |
+
```
|
15 |
+
import torch
|
16 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, set_seed
|
17 |
+
|
18 |
+
model = AutoModelForCausalLM.from_pretrained("sbintuitions/sarashina1-7b", torch_dtype=torch.float16)
|
19 |
+
tokenizer = AutoTokenizer.from_pretrained("sbintuitions/sarashina1-7b", use_fast=False)
|
20 |
+
generator = pipeline("text-generation", model=model, tokenizer=tokenizer, device=0)
|
21 |
+
set_seed(123)
|
22 |
+
|
23 |
+
text = generator(
|
24 |
+
"おはようございます、今日の天気は",
|
25 |
+
max_length=30,
|
26 |
+
do_sample=True,
|
27 |
+
pad_token_id=tokenizer.pad_token_id,
|
28 |
+
num_return_sequences=3,
|
29 |
+
)
|
30 |
+
|
31 |
+
for t in text:
|
32 |
+
print(t)
|
33 |
+
|
34 |
+
# These examples are generated by sarashina1-7b parameters model
|
35 |
+
# {'generated_text': 'おはようございます、今日の天気は晴れ!!最高気温は15度、最低気温は7度です。今日も1日頑張りましょー♪写真は、去年'}
|
36 |
+
# {'generated_text': 'おはようございます、今日の天気は曇り:cloud:です。 雨予報なので、洗濯物は家の中へ。 :city_sunrise:の見える時間。 今日は'}
|
37 |
+
# {'generated_text': 'おはようございます、今日の天気は、晴れ、気温も10度以上に上がるそうです、お日様が当たっていると15度くらいになると思います、朝の'}
|
38 |
+
```
|
39 |
+
|
40 |
+
## Configuration
|
41 |
+
|
42 |
+
| Parameters | Vocab size | Trainning tokens | Architecture | Position type | Layers | Hidden dim | Attention heads |
|
43 |
+
| :-----: | :-----------: | :-------------: | :----------- | :-----------: | :----: | :--------: | :-------------: |
|
44 |
+
| [7B](https://huggingface.co/sbintuitions/sarashina1-7b) | 51200 | 1.0T | GPTNeoX | RoPE | 32 | 4096 | 32 |
|
45 |
+
| [13B](https://huggingface.co/sbintuitions/sarashina1-13b) | 51200 | 1.0T | GPTNeoX | RoPE | 40 | 5120 | 40 |
|
46 |
+
| [65B](https://huggingface.co/sbintuitions/sarashina1-65b) | 51200 | 800B | GPTNeoX | RoPE | 80 | 8192 | 64 |
|
47 |
+
|
48 |
+
## Training Corpus
|
49 |
+
|
50 |
+
We used a Japanese portion of the [Common Crawl corpus](https://commoncrawl.org/), which is the largest Web corpus, as our training dataset.
|
51 |
+
To clean the training corpus, we used [CCNet](https://github.com/facebookresearch/cc_net) and [HojiChar](https://github.com/HojiChar/HojiChar).
|
52 |
+
After cleaning, our corpus contains about 550B tokens.
|
53 |
+
|
54 |
+
## Tokenization
|
55 |
+
|
56 |
+
We use a [sentencepiece](https://github.com/google/sentencepiece) tokenizer with a unigram language model and byte-fallback.
|
57 |
+
We do not apply pre-tokenization with Japanese tokenizer.
|
58 |
+
Thus, a user may directly feed raw sentences into the tokenizer.
|
59 |
+
|
60 |
+
|
61 |
+
## Ethical Considerations and Limitations
|
62 |
+
Sarashina1 has not been tuned to follow an instruction yet.
|
63 |
+
Therefore, sarashina1 might generate some meaningless sequences, some inaccurate instances or biased/objectionable outputs.
|
64 |
+
Before using sarashina1, we would like developers to tune models based on human preferences and safety considerations.
|
65 |
+
|
66 |
+
## License
|
67 |
+
|
68 |
+
[MIT License](https://huggingface.co/sbintuitions/sarashina1-7b/blob/main/LICENSE)
|