potsawee commited on
Commit
e1fd6c2
1 Parent(s): fbd9086

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +41 -181
README.md CHANGED
@@ -7,199 +7,59 @@ language:
7
  pipeline_tag: text-generation
8
  ---
9
 
10
- # Model Card for Model ID
11
-
12
- <!-- Provide a quick summary of what the model is/does. -->
13
 
14
  <div align="center">
15
- <img src="https://i.postimg.cc/vZJ3xCyy/1-2.png" alt="typhoon-audio" style="width: 100%; max-width: 20cm; margin-left: 'auto'; margin-right:'auto'; display:'block'"/>
16
  </div>
17
 
18
- ## Model Details
19
-
20
- ### Model Description
21
-
22
- <!-- Provide a longer summary of what this model is. -->
23
 
24
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
25
 
26
- - **Developed by:** [More Information Needed]
27
- - **Funded by [optional]:** [More Information Needed]
28
- - **Shared by [optional]:** [More Information Needed]
29
- - **Model type:** [More Information Needed]
30
- - **Language(s) (NLP):** [More Information Needed]
31
- - **License:** [More Information Needed]
32
- - **Finetuned from model [optional]:** [More Information Needed]
33
 
34
- ### Model Sources [optional]
35
-
36
- <!-- Provide the basic links for the model. -->
37
-
38
- - **Repository:** [More Information Needed]
39
- - **Paper [optional]:** [More Information Needed]
40
- - **Demo [optional]:** [More Information Needed]
41
 
42
  ## Usage Example
43
 
44
  ```python
45
  from transformers import AutoModel
46
- model_id = "potsawee/llama-3-typhoon-v1.5-8b-audio-preview"
47
- model = AutoModel.from_pretrained(model_id, trust_remote_code=True)
48
- ```
49
-
50
- [More Information Needed]
51
-
52
- ### Downstream Use [optional]
53
-
54
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
55
-
56
- [More Information Needed]
57
-
58
- ### Out-of-Scope Use
59
-
60
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
61
-
62
- [More Information Needed]
63
-
64
- ## Bias, Risks, and Limitations
65
-
66
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
67
-
68
- [More Information Needed]
69
-
70
- ### Recommendations
71
-
72
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
73
-
74
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
75
-
76
- ## How to Get Started with the Model
77
-
78
- Use the code below to get started with the model.
79
-
80
- [More Information Needed]
81
-
82
- ## Training Details
83
-
84
- ### Training Data
85
-
86
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
87
-
88
- [More Information Needed]
89
-
90
- ### Training Procedure
91
-
92
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
93
-
94
- #### Preprocessing [optional]
95
-
96
- [More Information Needed]
97
-
98
-
99
- #### Training Hyperparameters
100
-
101
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
102
-
103
- #### Speeds, Sizes, Times [optional]
104
-
105
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
106
-
107
- [More Information Needed]
108
-
109
- ## Evaluation
110
-
111
- <!-- This section describes the evaluation protocols and provides the results. -->
112
-
113
- ### Testing Data, Factors & Metrics
114
-
115
- #### Testing Data
116
-
117
- <!-- This should link to a Dataset Card if possible. -->
118
 
119
- [More Information Needed]
120
-
121
- #### Factors
122
-
123
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
124
-
125
- [More Information Needed]
126
-
127
- #### Metrics
128
-
129
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
130
-
131
- [More Information Needed]
132
-
133
- ### Results
134
-
135
- [More Information Needed]
136
-
137
- #### Summary
138
-
139
-
140
-
141
- ## Model Examination [optional]
142
-
143
- <!-- Relevant interpretability work for the model goes here -->
144
-
145
- [More Information Needed]
146
-
147
- ## Environmental Impact
148
-
149
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
150
-
151
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
152
-
153
- - **Hardware Type:** [More Information Needed]
154
- - **Hours used:** [More Information Needed]
155
- - **Cloud Provider:** [More Information Needed]
156
- - **Compute Region:** [More Information Needed]
157
- - **Carbon Emitted:** [More Information Needed]
158
-
159
- ## Technical Specifications [optional]
160
-
161
- ### Model Architecture and Objective
162
-
163
- [More Information Needed]
164
-
165
- ### Compute Infrastructure
166
-
167
- [More Information Needed]
168
-
169
- #### Hardware
170
-
171
- [More Information Needed]
172
-
173
- #### Software
174
-
175
- [More Information Needed]
176
-
177
- ## Citation [optional]
178
-
179
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
180
-
181
- **BibTeX:**
182
-
183
- [More Information Needed]
184
-
185
- **APA:**
186
-
187
- [More Information Needed]
188
-
189
- ## Glossary [optional]
190
-
191
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
192
-
193
- [More Information Needed]
194
-
195
- ## More Information [optional]
196
-
197
- [More Information Needed]
198
-
199
- ## Model Card Authors [optional]
200
-
201
- [More Information Needed]
202
 
203
- ## Model Card Contact
204
 
205
- [More Information Needed]
 
 
 
 
 
7
  pipeline_tag: text-generation
8
  ---
9
 
10
+ # Typhoon-Audio Preview
 
 
11
 
12
  <div align="center">
13
+ <img src="https://i.postimg.cc/DycZ98w2/typhoon-audio.png" alt="typhoon-audio" style="width: 100%; max-width: 20cm; margin-left: 'auto'; margin-right:'auto'; display:'block'"/>
14
  </div>
15
 
16
+ **llama-3-typhoon-v1.5-8b-audio-preview** is a 🇹🇭 Thai *audio-language* model. It supports both text and audio input modalities natively while the output is text. This version (August 2024) is our first audio-language model as a part of our multimodal effort, and it is a research *preview* version. The base language model is our [llama-3-typhoon-v1.5-8b-instruct](https://huggingface.co/scb10x/llama-3-typhoon-v1.5-8b-instruct).
 
 
 
 
17
 
18
+ More details can be found in our [release blog]() and [technical report](). *To acknowledge Meta's effort in creating the foundation model and to comply with the license, we explicitly include "llama-3" in the model name.
19
 
20
+ ## Model Description
 
 
 
 
 
 
21
 
22
+ - **Model type**: The LLM is based on Typhoon-1.5-8b-instruct, and the audio encoder is based on Whisper's encoder and BEATs.
23
+ - **Requirement**: transformers 4.38.0 or newer.
24
+ - **Primary Language(s)**: Thai 🇹🇭 and English 🇬🇧
25
+ - **Demo**: https://audio.opentyphoon.ai/
26
+ - **License**: [Llama 3 Community License](https://llama.meta.com/llama3/license/)
 
 
27
 
28
  ## Usage Example
29
 
30
  ```python
31
  from transformers import AutoModel
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32
 
33
+ # Initialize from the trained model
34
+ model = AutoModel.from_pretrained(
35
+ "scb10x/llama-3-typhoon-v1.5-8b-audio-preview",
36
+ torch_dtype=torch.float16,
37
+ trust_remote_code=True
38
+ )
39
+ model.to("cuda")
40
+ model.eval()
41
+
42
+ # Run generation
43
+ prompt_pattern="<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n<Speech><SpeechHere></Speech> {}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
44
+ response = model.generate(
45
+ wav_path="path_to_your_audio.wav",
46
+ prompt="transcribe this audio",
47
+ prompt_pattern=prompt_pattern,
48
+ do_sample=False,
49
+ max_length=1200,
50
+ repetition_penalty=1.1,
51
+ num_beams=1,
52
+ # temperature=0.4,
53
+ # top_p=0.9,
54
+ # streamer=streamer # supports TextIteratorStreamer
55
+ )
56
+ print(response)
57
+ ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58
 
59
+ ## Evaluation Results
60
 
61
+ ## Acknowledgements
62
+ In addition to common libraries and tools, we would like to thank the following projects for releasing model weights and code:
63
+ - Training recipe: [SALMONN](https://github.com/bytedance/SALMONN) from ByteDance
64
+ - Audio encoder: [BEATs]( https://github.com/microsoft/unilm/tree/master/beats) from Microsoft
65
+ - Whisper encoder: [Fine-tuned Whisper](https://huggingface.co/biodatlab/whisper-th-large-v3-combined) from Biomedical and Data Lab @ Mahidol University