File size: 4,092 Bytes
d30f715 211bb88 d30f715 211bb88 d30f715 0305e9d d30f715 314bcd5 d30f715 0305e9d d30f715 20b410f 5fa3804 d30f715 20b410f d30f715 be3324b d30f715 584412a d30f715 28573b4 ecfa12b d30f715 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 |
---
license: other
license_name: tongyi-qianwen
license_link: https://huggingface.co/Qwen/Qwen1.5-72B/blob/main/LICENSE
language:
- th
- en
pipeline_tag: text-generation
---
**Typhoon-1.5-72B-instruct: Thai Large Language Model (Instruct-AWQ)**
**Typhoon-1.5-72B-instruct** is a *instruct* Thai 🇹🇭 large language model with 72 billion parameters, and it is based on Qwen1.5-72B.
**We also have a newer release of 1.5x 70B, which is better for application use cases.** [here](https://huggingface.co/scb10x/llama-3-typhoon-v1.5x-70b-instruct-awq)

For release post, please see our [blog](https://blog.opentyphoon.ai/typhoon-1-5-release-a9364cb8e8d7).
## **Model Description**
- **Model type**: A 72B instruct decoder-only model based on Qwen1.5 archtecture.
- **Requirement**: vllm (https://pypi.org/project/vllm/) 0.3.2 or newer.
- **Primary Language(s)**: Thai 🇹🇭 and English 🇬🇧
- **License**: [Qwen License](https://huggingface.co/Qwen/Qwen1.5-72B/raw/main/LICENSE)
## **Performance**
| Model | ONET | IC | TGAT | TPAT-1 | A-Level | Average (ThaiExam) | M3Exam | MMLU |
| --- | --- | --- | --- | --- | --- | --- | --- | --- |
| Typhoon-1.5 72B | 0.562 | ***0.716*** | ***0.778*** | 0.5 | 0.528 | ***0.6168*** | 0.587 | 0.7271 |
| OpenThaiGPT 1.0.0 70B | 0.447 | 0.492 | ***0.778*** | 0.5 | 0.319 | 0.5072 | 0.493 | 0.6167 |
| GPT-3.5-turbo(01-2024) | 0.358 | 0.279 | 0.678 | 0.345 | 0.318 | 0.3956 | 0.316 | 0.700** |
| GPT-4(04-2024) | ***0.589*** | 0.594 | 0.756 | ***0.517*** | ***0.616*** | 0.6144 | ***0.626*** | ***0.864***** |
## Usage Example
```python
from transformers import AutoTokenizer
from vllm import LLM, SamplingParams
quant_path = "scb10x/typhoon-v1.5-72b-instruct-awq"
llm = LLM(model=quant_path, quantization='awq', max_model_len=8192)
tokenizer = AutoTokenizer.from_pretrained(quant_path)
messages = [
{"role": "user", "content": "ขอสูตรไก่ย่าง"},
]
prompts = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=False
)
sampling_params = SamplingParams(repetition_penalty=1.15, top_p=0.6, temperature=0.9, max_tokens=1024, stop=['<|im_end|>', '<|im_start|>'])
outputs = llm.generate(prompts, sampling_params=sampling_params)
print(outputs[0].outputs)
```
## Chat Template
We use chatml chat-template.
```python
{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content']}}{% if (loop.last and add_generation_prompt) or not loop.last %}{{ '<|im_end|>' + '\n'}}{% endif %}{% endfor %}
{% if add_generation_prompt and messages[-1]['role'] != 'assistant' %}{{ '<|im_start|>assistant\n' }}{% endif %}
```
## **Intended Uses & Limitations**
This model is an instructional model. However, it’s still undergoing development. It incorporates some level of guardrails, but it still may produce answers that are inaccurate, biased, or otherwise objectionable in response to user prompts. We recommend that developers assess these risks in the context of their use case.
## **Follow us**
**https://twitter.com/opentyphoon**
## **Support / Ask any question**
**https://discord.gg/CqyBscMFpg**
## **SCB10X AI Team**
- Kunat Pipatanakul, Potsawee Manakul, Sittipong Sripaisarnmongkol, Natapong Nitarach, Pathomporn Chokchainant, Kasima Tharnpipitchai
- If you find Typhoon-v1.5 useful for your work, please cite it using:
```
@article{pipatanakul2023typhoon,
title={Typhoon: Thai Large Language Models},
author={Kunat Pipatanakul and Phatrasek Jirabovonvisut and Potsawee Manakul and Sittipong Sripaisarnmongkol and Ruangsak Patomwong and Pathomporn Chokchainant and Kasima Tharnpipitchai},
year={2023},
journal={arXiv preprint arXiv:2312.13951},
url={https://arxiv.org/abs/2312.13951}
}
```
## **Contact Us**
- General & Collaboration: **[[email protected]](mailto:[email protected])**, **[[email protected]](mailto:[email protected])**
- Technical: **[[email protected]](mailto:[email protected])** |