--- license: apache-2.0 --- # Beam Retrieval: General End-to-End Retrieval for Multi-Hop Question Answering (Zhang et all 2023) Unofficial mirror of [Beam Retriever](https://github.com/canghongjian/beam_retriever) This is the finetuned **encoder only** [DebertaV3Large](https://huggingface.co/microsoft/deberta-v3-large) of the Beam Retriever model which can be used for maximum inner product search. ## Usage ```python from transformers import DebertaV2Model finetuned_encoder = DebertaV2Model.from_pretrained('scholarly-shadows-syndicate/beam_retriever_unofficial_encoder_only') ``` ## Citations ```bibtex @article{Zhang2023BeamRG, title={Beam Retrieval: General End-to-End Retrieval for Multi-Hop Question Answering}, author={Jiahao Zhang and H. Zhang and Dongmei Zhang and Yong Liu and Sheng Huang}, journal={ArXiv}, year={2023}, volume={abs/2308.08973}, url={https://api.semanticscholar.org/CorpusID:261030563} } ``` ```bibtex @article{He2020DeBERTaDB, title={DeBERTa: Decoding-enhanced BERT with Disentangled Attention}, author={Pengcheng He and Xiaodong Liu and Jianfeng Gao and Weizhu Chen}, journal={ArXiv}, year={2020}, volume={abs/2006.03654}, url={https://api.semanticscholar.org/CorpusID:219531210} } ```