# coding=utf-8 # This file modifies the original PHI3 Model from Microsoft. Please refer to # https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/blob/main/modeling_phi3.py # for the original implementation. # This implementation takes advantage of the (K) optimization described at: # https://www.researchgate.net/publication/360226228_Grouped_Pointwise_Convolutions_Reduce_Parameters_in_Convolutional_Neural_Networks # https://www.researchgate.net/publication/355214501_Grouped_Pointwise_Convolutions_Significantly_Reduces_Parameters_in_EfficientNet # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch KPhi-3 model.""" import inspect import math import warnings from typing import List, Optional, Tuple, Union import torch import torch.nn.functional as F import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from transformers.activations import ACT2FN from transformers.generation import GenerationMixin from transformers.cache_utils import Cache, DynamicCache, SlidingWindowCache, StaticCache from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask from transformers.modeling_outputs import ( BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast, TokenClassifierOutput, ) from transformers.modeling_utils import PreTrainedModel from transformers.utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, is_flash_attn_2_available, is_flash_attn_greater_or_equal_2_10, logging, replace_return_docstrings, ) from .configuration_kphi3 import KPhi3Config if is_flash_attn_2_available(): from transformers.modeling_flash_attention_utils import _flash_attention_forward def get_max_acceptable_common_divisor(a, b, max_acceptable=1000000): """ This is an inefficient max acceptable common divisor implementation to be improved. # Arguments a: is an integer. b: is an integer. max_acceptable: maximum acceptable common divisor. """ divisor = max(1, min(a, b, max_acceptable)) while divisor > 0: if a % divisor == 0 and b % divisor == 0: return divisor break divisor -= 1 class InterleaveChannels(nn.Module): """ This layer interleaves channels stepping according to the number passed as parameter. This layer assumes "channel last". """ def __init__(self, step_size=2, last_dim=3): super().__init__() self.step_size = step_size if step_size >= 2 else 1 self.last_dim = last_dim def forward(self, x): if (self.last_dim==3): return torch.cat([x[:, :, :, shift_pos::self.step_size] for shift_pos in range(self.step_size)], dim=3) else: if (self.last_dim==2): return torch.cat([x[:, :, shift_pos::self.step_size] for shift_pos in range(self.step_size)], dim=2) def SignedSquareRoot1(x): """ Custom activation function that implements: f(x) = sqrt(x) for x > 1 f(x) = sqrt(-x) for x < -1 f(x) = x for -1 ≤ x ≤ 1 """ return torch.where(x > 1, torch.sqrt(x), torch.where(x < -1, torch.sqrt(-x), x) ) # coded by GPT o1 Preview class InterleaveChannelsFast(nn.Module): """ This layer interleaves channels stepping according to the number passed as parameter. This layer assumes "channel last". """ def __init__(self, step_size=2, last_dim=3): super().__init__() self.step_size = max(step_size, 1) self.last_dim = last_dim def forward(self, x): if self.last_dim == 3: N, H, W, C = x.shape if C % self.step_size != 0: raise ValueError("Number of channels must be divisible by step_size") # Reshape to separate the interleaving groups x = x.view(N, H, W, self.step_size, C // self.step_size) # Transpose to interleave the channels x = x.permute(0, 1, 2, 4, 3) # Flatten back to the original shape x = x.reshape(N, H, W, C) return x elif self.last_dim == 2: N, H, W = x.shape if W % self.step_size != 0: raise ValueError("Width must be divisible by step_size") x = x.view(N, H, self.step_size, W // self.step_size) x = x.permute(0, 1, 3, 2) x = x.reshape(N, H, W) return x else: raise ValueError("last_dim must be 2 or 3") class GroupedLinear(nn.Module): """ Similarly to a grouped pointwise convolution, this layer is a grouped linear layer. This layer assumes "channel last". """ def __init__(self, in_features, out_features, num_groups=1, bias=True): super().__init__() self.in_features = in_features self.out_features = out_features self.num_groups = num_groups self.bias = bias # Check if input features are divisible by num_groups if in_features % num_groups != 0: raise ValueError("Input features must be divisible by num_groups.") if out_features % num_groups != 0: raise ValueError("Output features must be divisible by num_groups.") self.in_features_per_group = in_features // num_groups self.out_features_per_group = out_features // num_groups # Create individual linear layers for each group self.group_layers = nn.ModuleList([ nn.Linear(self.in_features_per_group, self.out_features_per_group, bias=bias) for _ in range(num_groups) ]) def forward(self, x): # print('input:',x.shape,' in:',self.in_features,' out:',self.out_features, # ' groups:',self.num_groups, # ' in_per_group:',self.in_features_per_group, # ' out_per_group:',self.out_features_per_group, # ' bias:',self.bias #) if self.in_features != x.shape[-1]: raise ValueError( "GroupedLinear error: "+ "expected in_feautures "+str(self.in_features)+ " but got "+str(x.shape[-1]) ) # Split the input tensor into groups along the last dimension x_groups = x.chunk(self.num_groups, dim=-1) # for i, tensor in enumerate(x_groups): # print(f'x_groups[{i}]: {tensor.shape}') # Apply individual linear layers to each group out_groups = [layer(group) for layer, group in zip(self.group_layers, x_groups)] # Concatenate the output groups along the last dimension out = torch.cat(out_groups, dim=-1) if self.out_features != out.shape[-1]: raise ValueError( "GroupedLinear error: "+ "expected out_feautures "+str(self.out_features)+ " but got "+str(out.shape[-1]) ) # print('output:',out.shape) return out class GroupedLinearFast(nn.Module): """ Optimized grouped linear layer. This layer assumes "channel last". """ def __init__(self, in_features, out_features, num_groups=1, bias=True): super().__init__() self.in_features = in_features self.out_features = out_features self.num_groups = num_groups # Validate divisibility if in_features % num_groups != 0: raise ValueError("Input features must be divisible by num_groups.") if out_features % num_groups != 0: raise ValueError("Output features must be divisible by num_groups.") self.in_features_per_group = in_features // num_groups self.out_features_per_group = out_features // num_groups # Initialize weight and bias parameters self.weight = nn.Parameter( torch.Tensor(num_groups, self.in_features_per_group, self.out_features_per_group) ) if bias: self.bias = nn.Parameter(torch.Tensor(num_groups, self.out_features_per_group)) else: self.register_parameter('bias', None) self.reset_parameters() def reset_parameters(self): # Weight initialization nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5)) if self.bias is not None: # Bias initialization fan_in = self.in_features_per_group bound = 1 / math.sqrt(fan_in) nn.init.uniform_(self.bias, -bound, bound) def forward(self, x): in_shape = x.shape if x.shape[-1] != self.in_features: raise ValueError( f"GroupedLinear error: expected in_features {self.in_features}, but got {x.shape[-1]}" ) # Reshape input to separate groups x = x.view(*x.shape[:-1], self.num_groups, self.in_features_per_group) # print('in shape', in_shape) # print('x shape', x.shape) # print('weight shape', self.weight.shape) # Perform batch matrix multiplication # x shape: [..., num_groups, in_features_per_group] # weight shape: [num_groups, in_features_per_group, out_features_per_group] # out = torch.matmul(x, self.weight) out = torch.einsum('...ni,niq->...nq', x, self.weight) # print('out shape', out.shape) # print(in_shape[0], in_shape[1], self.out_features) # Add bias if present if self.bias is not None: out += self.bias # Reshape output back to original shape # out = out.view(in_shape[0], in_shape[1], self.out_features) out = out.contiguous().view(*out.shape[:-2], self.out_features) return out class GroupedPointwiseConvolutionBlock(nn.Module): """ This layer is composed by a grouped pointwise convolution followed by interleaving and another grouped pointwise comvolution with skip connection. This basic architecture can vary according to the input tensor and its parameters. This is the basic building block for the papers: https://www.researchgate.net/publication/360226228_Grouped_Pointwise_Convolutions_Reduce_Parameters_in_Convolutional_Neural_Networks https://www.researchgate.net/publication/355214501_Grouped_Pointwise_Convolutions_Significantly_Reduces_Parameters_in_EfficientNet This layer assumes "channel last". """ def __init__(self, in_features, out_features, min_channels_per_group=32, last_dim=2, use_bias=False, activation=None, has_batch_norm=False, has_batch_scale=False): super().__init__() self.in_features = in_features self.out_features = out_features self.min_channels_per_group = min_channels_per_group self.last_dim = last_dim self.activation = activation self.has_batch_norm = has_batch_norm self.has_batch_scale = has_batch_scale self.has_interleaving = False self.use_bias = use_bias self.grouped = False self.second_conv = False self.first_pointwise_conv = None self.second_pointwise_conv = None self.interleave_layer = None # this is a hack to prevent runtime errors self.weight = torch.Tensor(1, 1, 1) self.bias = torch.Tensor(1, 1, 1) prev_layer_channel_count = in_features output_channel_count = out_features max_acceptable_divisor = (prev_layer_channel_count//min_channels_per_group) group_count = get_max_acceptable_common_divisor(prev_layer_channel_count, output_channel_count, max_acceptable = max_acceptable_divisor) if group_count is None: group_count=1 self.output_group_size = output_channel_count // group_count if (group_count>1): self.grouped = True self.first_pointwise_conv = GroupedLinearFast(in_features=in_features, out_features=out_features, num_groups=group_count, bias=use_bias) if self.output_group_size > 1: self.has_interleaving = True self.interleave_layer = InterleaveChannelsFast(self.output_group_size, last_dim=last_dim) if (prev_layer_channel_count >= output_channel_count): # print('Has intergroup') self.second_conv = True self.second_pointwise_conv = GroupedLinearFast(in_features=out_features, out_features=out_features, num_groups=group_count, bias=use_bias) else: #print ('Dismissed groups:', group_count, 'Input channels:', prev_layer_channel_count, 'Output Channels:', output_channel_count, 'Input channels per group:', input_group_size, 'Output channels per group:', output_group_size) self.first_pointwise_conv = GroupedLinear(in_features=in_features, out_features=out_features, num_groups=1, bias=use_bias) def forward(self, x): if (self.grouped): output_tensor = self.first_pointwise_conv(x) if self.activation is not None: output_tensor = self.activation(output_tensor) compression_tensor = output_tensor if self.has_interleaving: output_tensor = self.interleave_layer(output_tensor) if self.second_conv: output_tensor = self.second_pointwise_conv(output_tensor) if self.activation is not None: output_tensor = self.activation(output_tensor) output_tensor = output_tensor + compression_tensor else: output_tensor = self.first_pointwise_conv(x) if self.activation is not None: output_tensor = self.activation(output_tensor) return output_tensor logger = logging.get_logger(__name__) # Transformers scans dependencies in the modeling file, causing issues on conditional loading. The regex only ignores try/catch blocks, but not if statements # if is_flash_attn_2_available(): _flash_supports_window_size = False try: from flash_attn import flash_attn_func, flash_attn_varlen_func from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa _flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters) except ImportError as error: logger.warning( f"`flash-attention` package not found, consider installing for better performance: {error}." ) if not _flash_supports_window_size: logger.warning( "Current `flash-attention` does not support `window_size`. Either upgrade or use `attn_implementation='eager'`." ) _CHECKPOINT_FOR_DOC = "microsoft/Phi-3-mini-4k-instruct" _CONFIG_FOR_DOC = "KPhi3Config" # Copied from transformers.models.llama.modeling_llama._prepare_4d_causal_attention_mask_with_cache_position def _prepare_4d_causal_attention_mask_with_cache_position( attention_mask: torch.Tensor, sequence_length: int, target_length: int, dtype: torch.dtype, device: torch.device, min_dtype: float, cache_position: torch.Tensor, batch_size: int, ): """ Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing. Args: attention_mask (`torch.Tensor`): A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`. sequence_length (`int`): The sequence length being processed. target_length (`int`): The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet. dtype (`torch.dtype`): The dtype to use for the 4D attention mask. device (`torch.device`): The device to plcae the 4D attention mask on. min_dtype (`float`): The minimum value representable with the dtype `dtype`. cache_position (`torch.Tensor`): Indices depicting the position of the input sequence tokens in the sequence. batch_size (`torch.Tensor`): Batch size. """ if attention_mask is not None and attention_mask.dim() == 4: # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing. causal_mask = attention_mask else: causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device) if sequence_length != 1: causal_mask = torch.triu(causal_mask, diagonal=1) causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1) causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1) if attention_mask is not None: causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit mask_length = attention_mask.shape[-1] padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :] padding_mask = padding_mask == 0 causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( padding_mask, min_dtype ) return causal_mask # Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Phi3 class Phi3RMSNorm(nn.Module): def __init__(self, hidden_size, eps=1e-6): """ Phi3RMSNorm is equivalent to T5LayerNorm """ super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.variance_epsilon = eps def forward(self, hidden_states): input_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) variance = hidden_states.pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) return self.weight * hidden_states.to(input_dtype) def extra_repr(self): return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}" # Copied from transformers.models.gemma.modeling_gemma.GemmaRotaryEmbedding with gemma->phi3, Gemma->Phi3 class Phi3RotaryEmbedding(nn.Module): def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): super().__init__() self.dim = dim self.max_position_embeddings = max_position_embeddings self.base = base inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float() / self.dim)) self.register_buffer("inv_freq", tensor=inv_freq, persistent=False) @torch.no_grad() def forward(self, x, position_ids, seq_len=None): # x: [bs, num_attention_heads, seq_len, head_size] self.inv_freq.to(x.device) inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1) position_ids_expanded = position_ids[:, None, :].float() # Force float32 since bfloat16 loses precision on long contexts # See https://github.com/huggingface/transformers/pull/29285 device_type = x.device.type device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu" with torch.autocast(device_type=device_type, enabled=False): freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) emb = torch.cat((freqs, freqs), dim=-1) cos = emb.cos() sin = emb.sin() return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) class Phi3SuScaledRotaryEmbedding(Phi3RotaryEmbedding): def __init__(self, dim, config, device=None): warnings.warn( "The class Phi3SuScaledRotaryEmbedding is deprecated and will be removed in version 5 of Transformers. Please" " use Phi3LongRoPEScaledRotaryEmbedding instead.", FutureWarning, ) super().__init__(dim, config.max_position_embeddings, config.rope_theta, device) self.short_factor = config.rope_scaling["short_factor"] self.long_factor = config.rope_scaling["long_factor"] self.original_max_position_embeddings = config.original_max_position_embeddings @torch.no_grad() def forward(self, x, position_ids, seq_len=None): seq_len = torch.max(position_ids) + 1 if seq_len > self.original_max_position_embeddings: ext_factors = torch.tensor(self.long_factor, dtype=torch.float32, device=x.device) else: ext_factors = torch.tensor(self.short_factor, dtype=torch.float32, device=x.device) inv_freq_shape = torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim self.inv_freq = 1.0 / (ext_factors * self.base**inv_freq_shape) inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1) position_ids_expanded = position_ids[:, None, :].float() # Force float32 since bfloat16 loses precision on long contexts # See https://github.com/huggingface/transformers/pull/29285 device_type = x.device.type device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu" with torch.autocast(device_type=device_type, enabled=False): freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) emb = torch.cat((freqs, freqs), dim=-1) scale = self.max_position_embeddings / self.original_max_position_embeddings if scale <= 1.0: scaling_factor = 1.0 else: scaling_factor = math.sqrt(1 + math.log(scale) / math.log(self.original_max_position_embeddings)) cos = emb.cos() * scaling_factor sin = emb.sin() * scaling_factor return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) class Phi3YarnScaledRotaryEmbedding(Phi3RotaryEmbedding): def __init__(self, dim, config, device=None): warnings.warn( "The class Phi3YarnScaledRotaryEmbedding is deprecated and will be removed in version 5 of Transformers", FutureWarning, ) super().__init__(dim, config.max_position_embeddings, config.rope_theta, device) self.short_factor = config.rope_scaling["short_factor"] self.long_factor = config.rope_scaling["long_factor"] self.original_max_position_embeddings = config.original_max_position_embeddings @torch.no_grad() def forward(self, x, position_ids, seq_len=None): seq_len = torch.max(position_ids) + 1 if seq_len > self.original_max_position_embeddings: ext_factors = torch.tensor(self.long_factor, dtype=torch.float32, device=x.device) else: ext_factors = torch.tensor(self.short_factor, dtype=torch.float32, device=x.device) inv_freq_shape = torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim self.inv_freq = 1.0 / (ext_factors * self.base**inv_freq_shape) inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1) position_ids_expanded = position_ids[:, None, :].float() # Force float32 since bfloat16 loses precision on long contexts # See https://github.com/huggingface/transformers/pull/29285 device_type = x.device.type device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu" with torch.autocast(device_type=device_type, enabled=False): freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) emb = torch.cat((freqs, freqs), dim=-1) scale = self.max_position_embeddings / self.original_max_position_embeddings if scale <= 1.0: scaling_factor = 1.0 else: scaling_factor = 0.1 * math.log(scale) + 1.0 cos = emb.cos() * scaling_factor sin = emb.sin() * scaling_factor return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) class Phi3LongRoPEScaledRotaryEmbedding(Phi3RotaryEmbedding): def __init__(self, dim, config, device=None): super().__init__(dim, config.max_position_embeddings, config.rope_theta, device) self.short_factor = config.rope_scaling["short_factor"] self.long_factor = config.rope_scaling["long_factor"] self.original_max_position_embeddings = config.original_max_position_embeddings @torch.no_grad() def forward(self, x, position_ids, seq_len=None): seq_len = torch.max(position_ids) + 1 if seq_len > self.original_max_position_embeddings: ext_factors = torch.tensor(self.long_factor, dtype=torch.float32, device=x.device) else: ext_factors = torch.tensor(self.short_factor, dtype=torch.float32, device=x.device) inv_freq_shape = torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim self.inv_freq = 1.0 / (ext_factors * self.base**inv_freq_shape) inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1) position_ids_expanded = position_ids[:, None, :].float() # Force float32 since bfloat16 loses precision on long contexts # See https://github.com/huggingface/transformers/pull/29285 device_type = x.device.type device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu" with torch.autocast(device_type=device_type, enabled=False): freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) emb = torch.cat((freqs, freqs), dim=-1) scale = self.max_position_embeddings / self.original_max_position_embeddings if scale <= 1.0: scaling_factor = 1.0 else: scaling_factor = math.sqrt(1 + math.log(scale) / math.log(self.original_max_position_embeddings)) cos = emb.cos() * scaling_factor sin = emb.sin() * scaling_factor return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) # Copied from transformers.models.llama.modeling_llama.rotate_half def rotate_half(x): """Rotates half the hidden dims of the input.""" x1 = x[..., : x.shape[-1] // 2] x2 = x[..., x.shape[-1] // 2 :] return torch.cat((-x2, x1), dim=-1) # Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): """Applies Rotary Position Embedding to the query and key tensors. Args: q (`torch.Tensor`): The query tensor. k (`torch.Tensor`): The key tensor. cos (`torch.Tensor`): The cosine part of the rotary embedding. sin (`torch.Tensor`): The sine part of the rotary embedding. position_ids (`torch.Tensor`, *optional*): Deprecated and unused. unsqueeze_dim (`int`, *optional*, defaults to 1): The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. Returns: `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. """ cos = cos.unsqueeze(unsqueeze_dim) sin = sin.unsqueeze(unsqueeze_dim) q_embed = (q * cos) + (rotate_half(q) * sin) k_embed = (k * cos) + (rotate_half(k) * sin) return q_embed, k_embed class KPhi3MLP(nn.Module): def __init__(self, config): super().__init__() self.config = config self.activation_fn = ACT2FN[config.hidden_act] if self.config.min_channels_per_group >= 0: self.gate_up_proj = GroupedPointwiseConvolutionBlock(in_features=config.hidden_size, out_features=(2*config.intermediate_size), min_channels_per_group=self.config.min_channels_per_group , last_dim=2, use_bias=False) self.down_proj = GroupedPointwiseConvolutionBlock(in_features=config.intermediate_size, out_features=config.hidden_size, min_channels_per_group=self.config.min_channels_per_group, last_dim=2, use_bias=False) else: self.gate_up_proj = nn.Linear(config.hidden_size, 2 * config.intermediate_size, bias=False) self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False) def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor: up_states = self.gate_up_proj(hidden_states) gate, up_states = up_states.chunk(2, dim=-1) up_states = up_states * self.activation_fn(gate) return self.down_proj(up_states) # Copied from transformers.models.llama.modeling_llama.repeat_kv with llama->phi def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: """ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) """ batch, num_key_value_heads, slen, head_dim = hidden_states.shape if n_rep == 1: return hidden_states hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) class KPhi3Attention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config: KPhi3Config, layer_idx: Optional[int] = None): super().__init__() self.config = config self.layer_idx = layer_idx if layer_idx is None: logger.warning_once( f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will " "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` " "when creating this class." ) self.attention_dropout = config.attention_dropout self.hidden_size = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.hidden_size // self.num_heads self.num_key_value_heads = config.num_key_value_heads self.num_key_value_groups = self.num_heads // self.num_key_value_heads self.max_position_embeddings = config.max_position_embeddings self.original_max_position_embeddings = config.original_max_position_embeddings self.rope_theta = config.rope_theta self.rope_scaling = config.rope_scaling self.is_causal = True if (self.head_dim * self.num_heads) != self.hidden_size: raise ValueError( f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" f" and `num_heads`: {self.num_heads})." ) op_size = self.num_heads * self.head_dim + 2 * (self.num_key_value_heads * self.head_dim) if self.config.min_channels_per_group >= 0: self.o_proj = GroupedPointwiseConvolutionBlock(in_features=self.num_heads * self.head_dim, out_features=self.hidden_size, min_channels_per_group=self.config.min_channels_per_group, last_dim=2, use_bias=False) self.qkv_proj = GroupedPointwiseConvolutionBlock(in_features=self.hidden_size, out_features=op_size, min_channels_per_group=self.config.min_channels_per_group, last_dim=2, use_bias=False) else: self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) self.qkv_proj = nn.Linear(self.hidden_size, op_size, bias=False) self._init_rope() def _init_rope(self): if self.rope_scaling is None: self.rotary_emb = Phi3RotaryEmbedding( self.head_dim, max_position_embeddings=self.max_position_embeddings, base=self.rope_theta, ) else: scaling_type = self.config.rope_scaling["type"] if scaling_type == "longrope": self.rotary_emb = Phi3LongRoPEScaledRotaryEmbedding(self.head_dim, self.config) else: raise ValueError(f"Unknown RoPE scaling type {scaling_type}") def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: bool = False, use_cache: bool = False, cache_position: Optional[torch.LongTensor] = None, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: logger.warning_once("You are not running the flash-attention implementation, expect numerical differences.") bsz, q_len, _ = hidden_states.size() qkv = self.qkv_proj(hidden_states) query_pos = self.num_heads * self.head_dim query_states = qkv[..., :query_pos] key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim] value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :] query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) kv_seq_len = key_states.shape[-2] if past_key_value is not None: if self.layer_idx is None: raise ValueError( f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " "with a layer index." ) kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) cos, sin = self.rotary_emb(value_states, position_ids, seq_len=kv_seq_len) query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) if past_key_value is not None: cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) # repeat k/v heads if n_kv_heads < n_heads key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) if attention_mask is not None: causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] attn_weights += causal_mask # upcast attention to fp32 attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(value_states.dtype) # attn_weights = SignedSquareRoot1(attn_weights.to(value_states.dtype)) # value_states = SignedSquareRoot1(value_states) attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) attn_output = torch.matmul(attn_weights, value_states) # attn_output = SignedSquareRoot1(attn_output) if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) attn_output = self.o_proj(attn_output) # attn_output = SignedSquareRoot1(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value class KPhi3FlashAttention2(KPhi3Attention): """ KPhi-3 flash attention module. This module inherits from `KPhi3Attention` as the weights of the module stays untouched. The only required change would be on the forward pass where it needs to correctly call the public API of flash attention and deal with padding tokens in case the input contains any of them. """ # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: bool = False, use_cache: bool = False, cache_position: Optional[torch.LongTensor] = None, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: # Phi3FlashAttention2 attention does not support output_attentions output_attentions = False bsz, q_len, _ = hidden_states.size() qkv = self.qkv_proj(hidden_states) query_pos = self.num_heads * self.head_dim query_states = qkv[..., :query_pos] key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim] value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :] # Flash attention requires the input to have the shape # batch_size x seq_length x head_dim x hidden_dim # therefore we just need to keep the original shape query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) kv_seq_len = key_states.shape[-2] if past_key_value is not None: if self.layer_idx is None: raise ValueError( f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " "with a layer index." ) kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) # Because the input can be padded, the absolute sequence length depends on the max position id. rotary_seq_len = ( max(kv_seq_len, position_ids[:, -1].max().item() + 1) if position_ids is not None else kv_seq_len ) cos, sin = self.rotary_emb(value_states, seq_len=rotary_seq_len, position_ids=position_ids) query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) if past_key_value is not None: # Activate slicing cache only if the config has a value `sliding_windows` attribute cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0 if ( getattr(self.config, "sliding_window", None) is not None and kv_seq_len > self.config.sliding_window and cache_has_contents ): slicing_tokens = 1 - self.config.sliding_window past_key = past_key_value[self.layer_idx][0] past_value = past_key_value[self.layer_idx][1] past_key = past_key[:, :, slicing_tokens:, :].contiguous() past_value = past_value[:, :, slicing_tokens:, :].contiguous() if past_key.shape[-2] != self.config.sliding_window - 1: raise ValueError( f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got" f" {past_key.shape}" ) if attention_mask is not None: attention_mask = attention_mask[:, slicing_tokens:] attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1) cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) # repeat k/v heads if n_kv_heads < n_heads key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) attn_dropout = self.attention_dropout if self.training else 0.0 # In PEFT, usually we cast the layer norms in float32 for training stability reasons # therefore the input hidden states gets silently casted in float32. Hence, we need # cast them back in the correct dtype just to be sure everything works as expected. # This might slowdown training & inference so it is recommended to not cast the LayerNorms # in fp32. if query_states.dtype == torch.float32: if torch.is_autocast_enabled(): target_dtype = torch.get_autocast_gpu_dtype() # Handle the case where the model is quantized elif hasattr(self.config, "_pre_quantization_dtype"): target_dtype = self.config._pre_quantization_dtype else: target_dtype = self.qkv_proj.weight.dtype logger.warning_once( f"The input hidden states seems to be silently casted in float32, this might be related to" f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" f" {target_dtype}." ) query_states = query_states.to(target_dtype) key_states = key_states.to(target_dtype) value_states = value_states.to(target_dtype) # Reashape to the expected shape for Flash Attention query_states = query_states.transpose(1, 2) key_states = key_states.transpose(1, 2) value_states = value_states.transpose(1, 2) attn_output = _flash_attention_forward( query_states, key_states, value_states, attention_mask, q_len, position_ids=position_ids, dropout=attn_dropout, sliding_window=getattr(self.config, "sliding_window", None), use_top_left_mask=self._flash_attn_uses_top_left_mask, is_causal=self.is_causal, ) attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous() attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value # copied from transformers.models.llama.modeling_llama.LlamaSdpaAttention with Llama->Phi3 # TODO @Arthur no longer copied from LLama after static cache class KPhi3SdpaAttention(KPhi3Attention): """ Phi3 attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from `Phi3Attention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to SDPA API. """ # Adapted from Phi3Attention.forward def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: bool = False, use_cache: bool = False, cache_position: Optional[torch.LongTensor] = None, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: if output_attentions: # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented. logger.warning_once( "Phi3Model is using Phi3SdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, " 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' ) return super().forward( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, ) bsz, q_len, _ = hidden_states.size() qkv = self.qkv_proj(hidden_states) query_pos = self.num_heads * self.head_dim query_states = qkv[..., :query_pos] key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim] value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :] query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) kv_seq_len = key_states.shape[-2] if past_key_value is not None: kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) cos, sin = self.rotary_emb(value_states, position_ids, seq_len=kv_seq_len) query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) if past_key_value is not None: cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) causal_mask = attention_mask if attention_mask is not None: causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask, # Reference: https://github.com/pytorch/pytorch/issues/112577. if query_states.device.type == "cuda" and attention_mask is not None: query_states = query_states.contiguous() key_states = key_states.contiguous() value_states = value_states.contiguous() # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling. # The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1. is_causal = True if causal_mask is None and q_len > 1 else False attn_output = torch.nn.functional.scaled_dot_product_attention( query_states, key_states, value_states, attn_mask=causal_mask, dropout_p=self.attention_dropout if self.training else 0.0, is_causal=is_causal, ) attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.view(bsz, q_len, self.hidden_size) attn_output = self.o_proj(attn_output) return attn_output, None, past_key_value KPHI3_ATTENTION_CLASSES = { "eager": KPhi3Attention, "flash_attention_2": KPhi3FlashAttention2, "sdpa": KPhi3SdpaAttention, } class KPhi3DecoderLayer(nn.Module): def __init__(self, config: KPhi3Config, layer_idx: int): super().__init__() self.config = config self.self_attn = KPHI3_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx=layer_idx) self.mlp = KPhi3MLP(config) self.input_layernorm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.resid_attn_dropout = nn.Dropout(config.resid_pdrop) self.resid_mlp_dropout = nn.Dropout(config.resid_pdrop) self.post_attention_layernorm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, **kwargs, ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`, *optional*): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. position_ids (`torch.LongTensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): Indices depicting the position of the input sequence tokens in the sequence kwargs (`dict`, *optional*): Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code into the model """ residual = hidden_states hidden_states = self.input_layernorm(hidden_states) # Self Attention attn_outputs, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, ) hidden_states = residual + self.resid_attn_dropout(attn_outputs) residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + self.resid_mlp_dropout(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) if use_cache: outputs += (present_key_value,) return outputs KPHI3_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`KPhi3Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ @add_start_docstrings( "The bare Phi-3 model outputting raw hidden-states without any specific head on top.", KPHI3_START_DOCSTRING, ) class KPhi3PreTrainedModel(PreTrainedModel, GenerationMixin): config_class = KPhi3Config base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["KPhi3DecoderLayer"] _skip_keys_device_placement = "past_key_values" _supports_flash_attn_2 = True _supports_sdpa = False _supports_cache_class = True _version = "1.0.0" def _init_weights(self, module): std = self.config.initializer_range if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() KPHI3_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. If `past_key_values` is used, optionally only the last `input_ids` have to be input (see `past_key_values`). If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*): Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. Two formats are allowed: - a [`~cache_utils.Cache`] instance; - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy cache format. The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the legacy cache format will be returned. If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`, this tensor is not affected by padding. It is used to update the cache in the correct position and to infer the complete sequence length. """ @add_start_docstrings( "The bare KPhi-3 model outputting raw hidden-states without any specific head on top.", KPHI3_START_DOCSTRING, ) class KPhi3Model(KPhi3PreTrainedModel): """ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`KPhi3DecoderLayer`] Args: config: KPhi3Config """ def __init__(self, config: KPhi3Config): super().__init__(config) self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.activation_fn = ACT2FN[config.hidden_act] self.embed_tokens = nn.Embedding(config.vocab_size, config.embed_size, self.padding_idx) if config.embed_size != config.hidden_size: self.embed_to_hidden = GroupedPointwiseConvolutionBlock(config.embed_size, config.hidden_size, config.min_channels_per_group) self.embed_dropout = nn.Dropout(config.embd_pdrop) self.layers = nn.ModuleList( [KPhi3DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] ) self._attn_implementation = config._attn_implementation self.norm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value @add_start_docstrings_to_model_forward(KPHI3_INPUTS_DOCSTRING) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, ) -> Union[Tuple, BaseModelOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError( "You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one" ) if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False use_legacy_cache = False if use_cache and not isinstance(past_key_values, Cache) and not self.training: use_legacy_cache = True past_key_values = DynamicCache.from_legacy_cache(past_key_values) logger.warning_once( "We detected that you are passing `past_key_values` as a tuple and this is deprecated and will be removed in v4.43. " "Please use an appropriate `Cache` class (https://huggingface.co/docs/transformers/v4.41.3/en/internal/generation_utils#transformers.Cache)" ) if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) if cache_position is None: past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 cache_position = torch.arange( past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device ) if position_ids is None: position_ids = cache_position.unsqueeze(0) causal_mask = self._update_causal_mask( attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions ) inputs_embeds = self.embed_dropout(inputs_embeds) if self.config.embed_size != self.config.hidden_size: hidden_states = self.embed_to_hidden(inputs_embeds) # hidden_states = self.activation_fn(self.embed_to_hidden(inputs_embeds)) else: hidden_states = inputs_embeds # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None next_decoder_cache = None for decoder_layer in self.layers: if output_hidden_states: all_hidden_states += (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( decoder_layer.__call__, hidden_states, causal_mask, position_ids, past_key_values, output_attentions, use_cache, cache_position, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=causal_mask, position_ids=position_ids, past_key_value=past_key_values, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache = layer_outputs[2 if output_attentions else 1] if output_attentions: all_self_attns += (layer_outputs[1],) hidden_states = self.norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) next_cache = None if use_cache: next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache if not return_dict: return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, ) # Copied from transformers.models.llama.modeling_llama.LlamaModel._update_causal_mask def _update_causal_mask( self, attention_mask: torch.Tensor, input_tensor: torch.Tensor, cache_position: torch.Tensor, past_key_values: Cache, output_attentions: bool, ): # TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static # KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes. # (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using # `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114 if self.config._attn_implementation == "flash_attention_2": if attention_mask is not None and 0.0 in attention_mask: return attention_mask return None # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail # to infer the attention mask. past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 using_static_cache = isinstance(past_key_values, StaticCache) # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions: if AttentionMaskConverter._ignore_causal_mask_sdpa( attention_mask, inputs_embeds=input_tensor, past_key_values_length=past_seen_tokens, is_training=self.training, ): return None dtype, device = input_tensor.dtype, input_tensor.device min_dtype = torch.finfo(dtype).min sequence_length = input_tensor.shape[1] if using_static_cache: target_length = past_key_values.get_max_length() else: target_length = ( attention_mask.shape[-1] if isinstance(attention_mask, torch.Tensor) else past_seen_tokens + sequence_length + 1 ) # In case the provided `attention` mask is 2D, we generate a causal mask here (4D). causal_mask = _prepare_4d_causal_attention_mask_with_cache_position( attention_mask, sequence_length=sequence_length, target_length=target_length, dtype=dtype, device=device, min_dtype=min_dtype, cache_position=cache_position, batch_size=input_tensor.shape[0], ) if ( self.config._attn_implementation == "sdpa" and attention_mask is not None and attention_mask.device.type == "cuda" and not output_attentions ): # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path. # Details: https://github.com/pytorch/pytorch/issues/110213 causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) return causal_mask class KPhi3ForCausalLM(KPhi3PreTrainedModel): _tied_weights_keys = ["lm_head.weight"] # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.__init__ with Llama->Phi3 def __init__(self, config): super().__init__(config) self.model = KPhi3Model(config) self.vocab_size = config.vocab_size if config.embed_size != config.hidden_size: self.hidden_to_embed = GroupedPointwiseConvolutionBlock(config.hidden_size, config.embed_size, config.min_channels_per_group) self.lm_head = nn.Linear(config.embed_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_input_embeddings def get_input_embeddings(self): return self.model.embed_tokens # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_input_embeddings def set_input_embeddings(self, value): self.model.embed_tokens = value # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_output_embeddings def get_output_embeddings(self): return self.lm_head # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_output_embeddings def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_decoder def set_decoder(self, decoder): self.model = decoder # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_decoder def get_decoder(self): return self.model # Ignore copy @add_start_docstrings_to_model_forward(KPHI3_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, ) -> Union[Tuple, CausalLMOutputWithPast]: r""" Args: labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Returns: Example: ```python >>> from transformers import AutoTokenizer, Phi3ForCausalLM >>> model = KPhi3ForCausalLM.from_pretrained("microsoft/phi-3-mini-4k-instruct") >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-3-mini-4k-instruct") >>> prompt = "This is an example script ." >>> inputs = tokenizer(prompt, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(inputs.input_ids, max_length=30) >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] 'This is an example script .\n Certainly! Below is a sample script that demonstrates a simple task, such as calculating the sum' ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] if self.config.embed_size != self.config.hidden_size: hidden_states = self.hidden_to_embed(hidden_states) logits = self.lm_head(hidden_states) logits = logits.float() loss = None if labels is not None: # Shift so that tokens < n predict n shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = CrossEntropyLoss() shift_logits = shift_logits.view(-1, self.config.vocab_size) shift_labels = shift_labels.view(-1) # Enable model parallelism shift_labels = shift_labels.to(shift_logits.device) loss = loss_fct(shift_logits, shift_labels) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.prepare_inputs_for_generation def prepare_inputs_for_generation( self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, cache_position=None, position_ids=None, use_cache=True, **kwargs, ): # If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens # Exception 1: when passing input_embeds, input_ids may be missing entries # Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here if past_key_values is not None: if inputs_embeds is not None: # Exception 1 input_ids = input_ids[:, -cache_position.shape[0] :] elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2) input_ids = input_ids[:, cache_position] if attention_mask is not None and position_ids is None: # create position_ids on the fly for batch generation position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) if past_key_values: position_ids = position_ids[:, -input_ids.shape[1] :] # This `clone` call is needed to avoid recapturing cuda graphs with `torch.compile`'s `mode="reduce-overhead`, as otherwise the input `position_ids` would have various stride during the decoding. Here, simply using `.contiguous()` is not sufficient as in the batch size = 1 case, `position_ids` is already contiguous but with varying stride which retriggers a capture. position_ids = position_ids.clone(memory_format=torch.contiguous_format) # if `inputs_embeds` are passed, we only want to use them in the 1st generation step if inputs_embeds is not None and cache_position[0] == 0: model_inputs = {"inputs_embeds": inputs_embeds, "input_ids": None} else: # The clone here is for the same reason as for `position_ids`. model_inputs = {"input_ids": input_ids.clone(memory_format=torch.contiguous_format), "inputs_embeds": None} if isinstance(past_key_values, StaticCache) and attention_mask.ndim == 2: if model_inputs["inputs_embeds"] is not None: batch_size, sequence_length, _ = model_inputs["inputs_embeds"].shape device = model_inputs["inputs_embeds"].device else: batch_size, sequence_length = model_inputs["input_ids"].shape device = model_inputs["input_ids"].device dtype = self.lm_head.weight.dtype min_dtype = torch.finfo(dtype).min attention_mask = _prepare_4d_causal_attention_mask_with_cache_position( attention_mask, sequence_length=sequence_length, target_length=past_key_values.get_max_length(), dtype=dtype, device=device, min_dtype=min_dtype, cache_position=cache_position, batch_size=batch_size, ) model_inputs.update( { "position_ids": position_ids, "cache_position": cache_position, "past_key_values": past_key_values, "use_cache": use_cache, "attention_mask": attention_mask, } ) return model_inputs @add_start_docstrings( """ The [`KPhi3Model`] with a sequence classification head on top (linear layer). [`KPhi3ForSequenceClassification`] uses the last token in order to do the classification, as other causal models (e.g. GPT-2) do. Since it does classification on the last token, it requires to know the position of the last token. If a `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in each row of the batch). """, KPHI3_START_DOCSTRING, ) # Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with Llama->Phi3, LLAMA->PHI3, self.transformer->self.model, transformer_outputs->model_outputs class KPhi3ForSequenceClassification(KPhi3PreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.model = KPhi3Model(config) self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value @add_start_docstrings_to_model_forward(KPHI3_INPUTS_DOCSTRING) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, SequenceClassifierOutputWithPast]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict model_outputs = self.model( input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = model_outputs[0] logits = self.score(hidden_states) if input_ids is not None: batch_size = input_ids.shape[0] else: batch_size = inputs_embeds.shape[0] if self.config.pad_token_id is None and batch_size != 1: raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") if self.config.pad_token_id is None: sequence_lengths = -1 else: if input_ids is not None: # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1 sequence_lengths = sequence_lengths % input_ids.shape[-1] sequence_lengths = sequence_lengths.to(logits.device) else: sequence_lengths = -1 pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] loss = None if labels is not None: labels = labels.to(logits.device) if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) else: loss = loss_fct(pooled_logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(pooled_logits, labels) if not return_dict: output = (pooled_logits,) + model_outputs[1:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutputWithPast( loss=loss, logits=pooled_logits, past_key_values=model_outputs.past_key_values, hidden_states=model_outputs.hidden_states, attentions=model_outputs.attentions, ) @add_start_docstrings( """ [`KPhi3Model`] with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, KPHI3_START_DOCSTRING, ) # Copied from transformers.models.mpt.modeling_mpt.MptForTokenClassification with Mpt->Phi3,MPT->PHI3,self.transformer->self.model,transformer_outputs->model_outputs class KPhi3ForTokenClassification(KPhi3PreTrainedModel): def __init__(self, config: KPhi3Config): super().__init__(config) self.num_labels = config.num_labels self.model = KPhi3Model(config) if hasattr(config, "classifier_dropout") and config.classifier_dropout is not None: classifier_dropout = config.classifier_dropout elif hasattr(config, "hidden_dropout") and config.hidden_dropout is not None: classifier_dropout = config.hidden_dropout else: classifier_dropout = 0.1 self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(KPHI3_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, attention_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **deprecated_arguments, ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict model_outputs = self.model( input_ids, past_key_values=past_key_values, attention_mask=attention_mask, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = model_outputs[0] hidden_states = self.dropout(hidden_states) logits = self.classifier(hidden_states) loss = None if labels is not None: # move labels to correct device to enable model parallelism labels = labels.to(logits.device) batch_size, seq_length = labels.shape loss_fct = CrossEntropyLoss() loss = loss_fct( logits.view(batch_size * seq_length, self.num_labels), labels.view(batch_size * seq_length) ) if not return_dict: output = (logits,) + model_outputs[2:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=model_outputs.hidden_states, attentions=model_outputs.attentions, )