File size: 1,074 Bytes
4857749 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 |
import json
from typing import Any, Dict, List
import sklearn
import os
import joblib
import numpy as np
class PreTrainedPipeline():
def __init__(self, path: str):
# load the model
self.model = joblib.load((os.path.join(path, "pipeline.pkl"))
def __call__(self, inputs: str) -> List[Dict[str, float]]:
"""
Args:
inputs (:obj:`str`):
a string containing some text
Return:
A :obj:`list`:. The object returned should be a list of one list like [[{"label": 0.9939950108528137}]] containing:
- "label": A string representing what the label/class is. There can be multiple labels.
- "score": A score between 0 and 1 describing how confident the model is for this label/class.
"""
predictions = self.model.predict_proba([inputs])
labels = []
for cls in predictions[0]:
labels.append({
"label": f"LABEL_{cls}",
"score": predictions[0][cls],
})
return labels |