metadata
license: apache-2.0
tags:
- text-classification
- generic
library_name: generic
Hugging Face Transformers with Scikit-learn Classifiers π€©π
This repository contains a small proof-of-concept pipeline that leverages longformer embeddings with scikit-learn Logistic Regression that does sentiment analysis. The training leverages the language module of whatlies.
Classification Report
Below is the classification report ππ»
precision recall f1-score support
0 0.84 0.89 0.86 53
1 0.86 0.81 0.84 47
accuracy 0.85 100
macro avg 0.85 0.85 0.85 100
weighted avg 0.85 0.85 0.85 100
Pipeline
Below you can see the pipeline ππ» (it's interactive! πͺ)
Pipeline(steps=[('embedding',\n HFTransformersLanguage(model_name_or_path='allenai/longformer-base-4096')),\n ('model', LogisticRegression())])Please rerun this cell to show the HTML repr or trust the notebook.
Pipeline(steps=[('embedding',\n HFTransformersLanguage(model_name_or_path='allenai/longformer-base-4096')),\n ('model', LogisticRegression())])
HFTransformersLanguage(model_name_or_path='allenai/longformer-base-4096')
LogisticRegression()
Hyperparameters
-'memory': None,
-'steps': [('embedding', HFTransformersLanguage(model_name_or_path='allenai/longformer-base-4096')),
('model', LogisticRegression())],
- 'verbose': False,
-'embedding': HFTransformersLanguage(model_name_or_path='allenai/longformer-base-4096'),
-'model': LogisticRegression(),
-'embedding_model_name_or_path': 'allenai/longformer-base-4096',
-'model_C': 1.0,
- 'model_class_weight': None,
- 'model_dual': False,
- 'model_fit_intercept': True,
- 'model_intercept_scaling': 1,
- 'model_l1_ratio': None,
- 'model_max_iter': 100,
- 'model_multi_class': 'auto',
-'model_n_jobs': None,
-'model_penalty': 'l2',
-'model_random_state': None,
-'model_solver': 'lbfgs',
-'model_tol': 0.0001,
-'model_verbose': 0,
-'model_warm_start': False