|
import json |
|
from typing import Any, Dict, List |
|
|
|
import sklearn |
|
import os |
|
import joblib |
|
import numpy as np |
|
|
|
|
|
|
|
class PreTrainedPipeline(): |
|
def __init__(self, path: str): |
|
|
|
self.model = joblib.load((os.path.join(path, "pipeline.pkl")) |
|
|
|
def __call__(self, inputs: str) -> List[Dict[str, float]]: |
|
""" |
|
Args: |
|
inputs (:obj:`str`): |
|
a string containing some text |
|
Return: |
|
A :obj:`list`:. The object returned should be a list of one list like [[{"label": 0.9939950108528137}]] containing: |
|
- "label": A string representing what the label/class is. There can be multiple labels. |
|
- "score": A score between 0 and 1 describing how confident the model is for this label/class. |
|
""" |
|
predictions = self.model.predict_proba([inputs]) |
|
labels = [] |
|
for cls in predictions[0]: |
|
labels.append({ |
|
"label": f"LABEL_{cls}", |
|
"score": predictions[0][cls], |
|
}) |
|
return labels |