Create pipeline.py
Browse files- pipeline.py +33 -0
pipeline.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
from typing import Any, Dict, List
|
3 |
+
|
4 |
+
import sklearn
|
5 |
+
import os
|
6 |
+
import joblib
|
7 |
+
import numpy as np
|
8 |
+
|
9 |
+
|
10 |
+
|
11 |
+
class PreTrainedPipeline():
|
12 |
+
def __init__(self, path: str):
|
13 |
+
# load the model
|
14 |
+
self.model = joblib.load((os.path.join(path, "pipeline.pkl"))
|
15 |
+
|
16 |
+
def __call__(self, inputs: str) -> List[Dict[str, float]]:
|
17 |
+
"""
|
18 |
+
Args:
|
19 |
+
inputs (:obj:`str`):
|
20 |
+
a string containing some text
|
21 |
+
Return:
|
22 |
+
A :obj:`list`:. The object returned should be a list of one list like [[{"label": 0.9939950108528137}]] containing:
|
23 |
+
- "label": A string representing what the label/class is. There can be multiple labels.
|
24 |
+
- "score": A score between 0 and 1 describing how confident the model is for this label/class.
|
25 |
+
"""
|
26 |
+
predictions = self.model.predict_proba([inputs])
|
27 |
+
labels = []
|
28 |
+
for cls in predictions[0]:
|
29 |
+
labels.append({
|
30 |
+
"label": f"LABEL_{cls}",
|
31 |
+
"score": predictions[0][cls],
|
32 |
+
})
|
33 |
+
return labels
|