sebastiansarasti commited on
Commit
b51c3f7
·
verified ·
1 Parent(s): 23552e8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +53 -3
README.md CHANGED
@@ -4,6 +4,56 @@ tags:
4
  - pytorch_model_hub_mixin
5
  ---
6
 
7
- This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration:
8
- - Library: [More Information Needed]
9
- - Docs: [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  - pytorch_model_hub_mixin
5
  ---
6
 
7
+ # Model Card: MRI Brain Tumor Classification (ResNet-18)
8
+
9
+ ## Model Details
10
+ - **Model Name**: `MRIResnet`
11
+ - **Architecture**: ResNet-18-based model for MRI brain tumor classification
12
+ - **Dataset**: [Brain Tumor MRI Dataset](https://www.kaggle.com/datasets/masoudnickparvar/brain-tumor-mri-dataset)
13
+ - **Batch Size**: 32
14
+ - **Loss Function**: CrossEntropy Loss
15
+ - **Optimizer**: Adam (learning rate = 1e-3)
16
+ - **Transfer Learning**: Yes (pretrained ResNet-18 with modified layers)
17
+
18
+ ## Model Architecture
19
+ This model is based on **ResNet-18**, a widely used convolutional neural network, and has been adapted for **MRI-based brain tumor classification**.
20
+
21
+ ### **Modifications**
22
+ - **Input Channel Adaptation**: The first convolutional layer is modified to accept single-channel (grayscale) MRI scans.
23
+ - **Classifier Head**: The fully connected (FC) layer is replaced to output 4 classes (assuming 4 tumor categories).
24
+ - **Transfer Learning**:
25
+ - **Frozen Layers**: All pre-trained weights are frozen except for the modified layers.
26
+ - **Trainable Layers**:
27
+ - First convolutional layer (`conv1`)
28
+ - Fully connected classification layer (`fc`)
29
+
30
+ ## Implementation
31
+ ### **Model Definition**
32
+ ```python
33
+ import torch
34
+ import torch.nn as nn
35
+ from torchvision.models import resnet18
36
+
37
+ class MRIResnet(nn.Module, PyTorchModelHubMixin):
38
+ def __init__(self):
39
+ super().__init__()
40
+ self.base_model = resnet18(weights=True)
41
+ self.base_model.conv1 = nn.Conv2d(
42
+ 1, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False
43
+ )
44
+ self.base_model.fc = nn.Linear(512, 4)
45
+
46
+ # Freeze all layers except the modified ones
47
+ for param in self.base_model.parameters():
48
+ param.requires_grad = False
49
+
50
+ for param in self.base_model.conv1.parameters():
51
+ param.requires_grad = True
52
+ for param in self.base_model.fc.parameters():
53
+ param.requires_grad = True
54
+
55
+ def forward(self, x):
56
+ return self.base_model(x)
57
+ ```
58
+
59
+ This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration: