selimc commited on
Commit
d959e3a
·
verified ·
1 Parent(s): ef2fb6f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +87 -3
README.md CHANGED
@@ -1,7 +1,91 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- ## Model Details
7
- Coming soon...
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  library_name: transformers
3
+ tags:
4
+ - Turkish
5
+ - TR
6
+ - ORPO
7
+ datasets:
8
+ - selimc/orpo-dpo-mix-TR-20k
9
+ language:
10
+ - tr
11
+ base_model:
12
+ - google/gemma-2-9b-it
13
  ---
14
 
15
+ # OrpoGemma-2-9B-TR
16
+
17
+ OrpoGemma-2-9B-TR is a Turkish fine-tuned version of [google/gemma-2-9b-it](https://huggingface.co/google/gemma-2-9b-it). It is trained using ORPO on a subset of 1500 rows from the dataset [selimc/orpo-dpo-mix-TR-20k](https://huggingface.co/datasets/selimc/orpo-dpo-mix-tr-20k).
18
+
19
+ ## Training Information
20
+
21
+ - **Base Model**: [google/gemma-2-9b-it](https://huggingface.co/google/gemma-2-9b-it)
22
+ - **Fine-Tuning Technique**: ORPO
23
+ - **Training Data**: 1500 rows from [selimc/orpo-dpo-mix-TR-20k](https://huggingface.co/datasets/selimc/orpo-dpo-mix-tr-20k)
24
+ - **Training Time**: 2.5 hours on NVIDIA H100
25
+
26
+ ### QLoRA Configurations:
27
+ - `lora_r`: 64
28
+ - `lora_alpha`: 32
29
+ - `lora_dropout`: 0.05
30
+
31
+ ### ORPO Training Parameters
32
+ - `lr`: 2e-6
33
+ - `epochs`: 3
34
+ - `Per Device Train Batch Size`: 8
35
+ - `Gradient Accumulation Steps`: 4
36
+
37
+ ## 📈 Training Curves
38
+
39
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/65281302cad797fc4abeffd7/bdhWq-TbvQ-h_aSQDf2pv.png)
40
+
41
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/65281302cad797fc4abeffd7/HUn3oZyiYA5dVf-fqPM7w.png)
42
+
43
+ ## Model Capabilities
44
+
45
+ - Generates fluent and coherent text in Turkish.
46
+ - Provides more informative and detailed responses to different types of instructions and question types.
47
+ - May still produce incorrect or nonsensical outputs, user verification is recommended.
48
+
49
+ ## How to Use
50
+
51
+ ```python
52
+ from transformers import pipeline, BitsAndBytesConfig, AutoTokenizer
53
+ import torch
54
+
55
+ bnb_config = BitsAndBytesConfig(
56
+ load_in_4bit=True,
57
+ bnb_4bit_use_double_quant=True,
58
+ bnb_4bit_quant_type="nf4",
59
+ bnb_4bit_compute_dtype=torch.bfloat16
60
+ )
61
+
62
+ model_id = "selimc/OrpoGemma-2-9B-TR"
63
+
64
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
65
+
66
+ pipe = pipeline(
67
+ "text-generation",
68
+ model=model_id,
69
+ model_kwargs={"torch_dtype": torch.bfloat16 ,'quantization_config': bnb_config},
70
+ tokenizer=tokenizer,
71
+ device_map="auto"
72
+ )
73
+
74
+ messages = [
75
+ {"role": "user", "content": "Gökyüzü neden mavi?"},
76
+ ]
77
+
78
+ prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
79
+
80
+ outputs = pipe(
81
+ prompt,
82
+ max_new_tokens=512,
83
+ do_sample=True,
84
+ temperature=0.3,
85
+ top_p=0.9
86
+ )
87
+
88
+ generated_text = outputs[0]['generated_text']
89
+ response = generated_text[len(prompt):].strip()
90
+ print(response)
91
+ ```