--- library_name: transformers tags: - Turkish - TR - ORPO datasets: - selimc/orpo-dpo-mix-TR-20k language: - tr base_model: - google/gemma-2-9b-it --- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/65281302cad797fc4abeffd7/Hqf7vdvp6dudVjN_bLKU_.png) # OrpoGemma-2-9B-TR OrpoGemma-2-9B-TR is a Turkish fine-tuned version of [google/gemma-2-9b-it](https://huggingface.co/google/gemma-2-9b-it). It is trained using ORPO on a subset of 1500 rows from the dataset [selimc/orpo-dpo-mix-TR-20k](https://huggingface.co/datasets/selimc/orpo-dpo-mix-tr-20k). ## Training Information - **Base Model**: [google/gemma-2-9b-it](https://huggingface.co/google/gemma-2-9b-it) - **Fine-Tuning Technique**: ORPO - **Training Data**: 1500 rows from [selimc/orpo-dpo-mix-TR-20k](https://huggingface.co/datasets/selimc/orpo-dpo-mix-tr-20k) - **Training Time**: 2.5 hours on NVIDIA H100 ### QLoRA Configurations: - `lora_r`: 64 - `lora_alpha`: 32 - `lora_dropout`: 0.05 ### ORPO Training Parameters - `lr`: 2e-6 - `epochs`: 3 - `Per Device Train Batch Size`: 8 - `Gradient Accumulation Steps`: 4 ## 📈 Training Curves ![image/png](https://cdn-uploads.huggingface.co/production/uploads/65281302cad797fc4abeffd7/bdhWq-TbvQ-h_aSQDf2pv.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/65281302cad797fc4abeffd7/HUn3oZyiYA5dVf-fqPM7w.png) ## Model Capabilities - Generates fluent and coherent text in Turkish. - Provides more informative and detailed responses to different types of instructions and question types. - May still produce incorrect or nonsensical outputs, user verification is recommended. ## How to Use ```python from transformers import pipeline, BitsAndBytesConfig, AutoTokenizer import torch bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16 ) model_id = "selimc/OrpoGemma-2-9B-TR" tokenizer = AutoTokenizer.from_pretrained(model_id) pipe = pipeline( "text-generation", model=model_id, model_kwargs={"torch_dtype": torch.bfloat16 ,'quantization_config': bnb_config}, tokenizer=tokenizer, device_map="auto" ) messages = [ {"role": "user", "content": "Gökyüzü neden mavi?"}, ] prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipe( prompt, max_new_tokens=512, do_sample=True, temperature=0.3, top_p=0.9 ) generated_text = outputs[0]['generated_text'] response = generated_text[len(prompt):].strip() print(response) ```