Update README.md
Browse files
README.md
CHANGED
@@ -1,32 +1,16 @@
|
|
1 |
---
|
2 |
pipeline_tag: sentence-similarity
|
|
|
3 |
tags:
|
4 |
- sentence-transformers
|
5 |
- feature-extraction
|
6 |
- sentence-similarity
|
7 |
- transformers
|
8 |
-
- transformers
|
9 |
-
- transformers
|
10 |
-
- transformers
|
11 |
-
- transformers
|
12 |
-
- transformers
|
13 |
-
- transformers
|
14 |
-
- transformers
|
15 |
-
- transformers
|
16 |
-
- transformers
|
17 |
-
- transformers
|
18 |
-
- transformers
|
19 |
-
- transformers
|
20 |
-
- transformers
|
21 |
-
- transformers
|
22 |
-
- transformers
|
23 |
-
- transformers
|
24 |
-
- transformers
|
25 |
---
|
26 |
|
27 |
# sentence-transformers/clip-ViT-B-32
|
28 |
|
29 |
-
This
|
30 |
|
31 |
|
32 |
|
@@ -64,307 +48,8 @@ For an automated evaluation of this model, see the *Sentence Embeddings Benchmar
|
|
64 |
SentenceTransformer(
|
65 |
(0): CLIPModel(
|
66 |
(model): CLIP(
|
67 |
-
(visual): VisualTransformer(
|
68 |
-
|
69 |
-
(ln_pre): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
70 |
-
(transformer): Transformer(
|
71 |
-
(resblocks): Sequential(
|
72 |
-
(0): ResidualAttentionBlock(
|
73 |
-
(attn): MultiheadAttention(
|
74 |
-
(out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
|
75 |
-
)
|
76 |
-
(ln_1): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
77 |
-
(mlp): Sequential(
|
78 |
-
(c_fc): Linear(in_features=768, out_features=3072, bias=True)
|
79 |
-
(gelu): QuickGELU()
|
80 |
-
(c_proj): Linear(in_features=3072, out_features=768, bias=True)
|
81 |
-
)
|
82 |
-
(ln_2): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
83 |
-
)
|
84 |
-
(1): ResidualAttentionBlock(
|
85 |
-
(attn): MultiheadAttention(
|
86 |
-
(out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
|
87 |
-
)
|
88 |
-
(ln_1): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
89 |
-
(mlp): Sequential(
|
90 |
-
(c_fc): Linear(in_features=768, out_features=3072, bias=True)
|
91 |
-
(gelu): QuickGELU()
|
92 |
-
(c_proj): Linear(in_features=3072, out_features=768, bias=True)
|
93 |
-
)
|
94 |
-
(ln_2): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
95 |
-
)
|
96 |
-
(2): ResidualAttentionBlock(
|
97 |
-
(attn): MultiheadAttention(
|
98 |
-
(out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
|
99 |
-
)
|
100 |
-
(ln_1): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
101 |
-
(mlp): Sequential(
|
102 |
-
(c_fc): Linear(in_features=768, out_features=3072, bias=True)
|
103 |
-
(gelu): QuickGELU()
|
104 |
-
(c_proj): Linear(in_features=3072, out_features=768, bias=True)
|
105 |
-
)
|
106 |
-
(ln_2): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
107 |
-
)
|
108 |
-
(3): ResidualAttentionBlock(
|
109 |
-
(attn): MultiheadAttention(
|
110 |
-
(out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
|
111 |
-
)
|
112 |
-
(ln_1): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
113 |
-
(mlp): Sequential(
|
114 |
-
(c_fc): Linear(in_features=768, out_features=3072, bias=True)
|
115 |
-
(gelu): QuickGELU()
|
116 |
-
(c_proj): Linear(in_features=3072, out_features=768, bias=True)
|
117 |
-
)
|
118 |
-
(ln_2): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
119 |
-
)
|
120 |
-
(4): ResidualAttentionBlock(
|
121 |
-
(attn): MultiheadAttention(
|
122 |
-
(out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
|
123 |
-
)
|
124 |
-
(ln_1): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
125 |
-
(mlp): Sequential(
|
126 |
-
(c_fc): Linear(in_features=768, out_features=3072, bias=True)
|
127 |
-
(gelu): QuickGELU()
|
128 |
-
(c_proj): Linear(in_features=3072, out_features=768, bias=True)
|
129 |
-
)
|
130 |
-
(ln_2): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
131 |
-
)
|
132 |
-
(5): ResidualAttentionBlock(
|
133 |
-
(attn): MultiheadAttention(
|
134 |
-
(out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
|
135 |
-
)
|
136 |
-
(ln_1): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
137 |
-
(mlp): Sequential(
|
138 |
-
(c_fc): Linear(in_features=768, out_features=3072, bias=True)
|
139 |
-
(gelu): QuickGELU()
|
140 |
-
(c_proj): Linear(in_features=3072, out_features=768, bias=True)
|
141 |
-
)
|
142 |
-
(ln_2): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
143 |
-
)
|
144 |
-
(6): ResidualAttentionBlock(
|
145 |
-
(attn): MultiheadAttention(
|
146 |
-
(out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
|
147 |
-
)
|
148 |
-
(ln_1): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
149 |
-
(mlp): Sequential(
|
150 |
-
(c_fc): Linear(in_features=768, out_features=3072, bias=True)
|
151 |
-
(gelu): QuickGELU()
|
152 |
-
(c_proj): Linear(in_features=3072, out_features=768, bias=True)
|
153 |
-
)
|
154 |
-
(ln_2): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
155 |
-
)
|
156 |
-
(7): ResidualAttentionBlock(
|
157 |
-
(attn): MultiheadAttention(
|
158 |
-
(out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
|
159 |
-
)
|
160 |
-
(ln_1): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
161 |
-
(mlp): Sequential(
|
162 |
-
(c_fc): Linear(in_features=768, out_features=3072, bias=True)
|
163 |
-
(gelu): QuickGELU()
|
164 |
-
(c_proj): Linear(in_features=3072, out_features=768, bias=True)
|
165 |
-
)
|
166 |
-
(ln_2): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
167 |
-
)
|
168 |
-
(8): ResidualAttentionBlock(
|
169 |
-
(attn): MultiheadAttention(
|
170 |
-
(out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
|
171 |
-
)
|
172 |
-
(ln_1): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
173 |
-
(mlp): Sequential(
|
174 |
-
(c_fc): Linear(in_features=768, out_features=3072, bias=True)
|
175 |
-
(gelu): QuickGELU()
|
176 |
-
(c_proj): Linear(in_features=3072, out_features=768, bias=True)
|
177 |
-
)
|
178 |
-
(ln_2): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
179 |
-
)
|
180 |
-
(9): ResidualAttentionBlock(
|
181 |
-
(attn): MultiheadAttention(
|
182 |
-
(out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
|
183 |
-
)
|
184 |
-
(ln_1): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
185 |
-
(mlp): Sequential(
|
186 |
-
(c_fc): Linear(in_features=768, out_features=3072, bias=True)
|
187 |
-
(gelu): QuickGELU()
|
188 |
-
(c_proj): Linear(in_features=3072, out_features=768, bias=True)
|
189 |
-
)
|
190 |
-
(ln_2): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
191 |
-
)
|
192 |
-
(10): ResidualAttentionBlock(
|
193 |
-
(attn): MultiheadAttention(
|
194 |
-
(out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
|
195 |
-
)
|
196 |
-
(ln_1): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
197 |
-
(mlp): Sequential(
|
198 |
-
(c_fc): Linear(in_features=768, out_features=3072, bias=True)
|
199 |
-
(gelu): QuickGELU()
|
200 |
-
(c_proj): Linear(in_features=3072, out_features=768, bias=True)
|
201 |
-
)
|
202 |
-
(ln_2): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
203 |
-
)
|
204 |
-
(11): ResidualAttentionBlock(
|
205 |
-
(attn): MultiheadAttention(
|
206 |
-
(out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
|
207 |
-
)
|
208 |
-
(ln_1): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
209 |
-
(mlp): Sequential(
|
210 |
-
(c_fc): Linear(in_features=768, out_features=3072, bias=True)
|
211 |
-
(gelu): QuickGELU()
|
212 |
-
(c_proj): Linear(in_features=3072, out_features=768, bias=True)
|
213 |
-
)
|
214 |
-
(ln_2): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
215 |
-
)
|
216 |
-
)
|
217 |
-
)
|
218 |
-
(ln_post): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
219 |
-
)
|
220 |
-
(transformer): Transformer(
|
221 |
-
(resblocks): Sequential(
|
222 |
-
(0): ResidualAttentionBlock(
|
223 |
-
(attn): MultiheadAttention(
|
224 |
-
(out_proj): NonDynamicallyQuantizableLinear(in_features=512, out_features=512, bias=True)
|
225 |
-
)
|
226 |
-
(ln_1): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
|
227 |
-
(mlp): Sequential(
|
228 |
-
(c_fc): Linear(in_features=512, out_features=2048, bias=True)
|
229 |
-
(gelu): QuickGELU()
|
230 |
-
(c_proj): Linear(in_features=2048, out_features=512, bias=True)
|
231 |
-
)
|
232 |
-
(ln_2): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
|
233 |
-
)
|
234 |
-
(1): ResidualAttentionBlock(
|
235 |
-
(attn): MultiheadAttention(
|
236 |
-
(out_proj): NonDynamicallyQuantizableLinear(in_features=512, out_features=512, bias=True)
|
237 |
-
)
|
238 |
-
(ln_1): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
|
239 |
-
(mlp): Sequential(
|
240 |
-
(c_fc): Linear(in_features=512, out_features=2048, bias=True)
|
241 |
-
(gelu): QuickGELU()
|
242 |
-
(c_proj): Linear(in_features=2048, out_features=512, bias=True)
|
243 |
-
)
|
244 |
-
(ln_2): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
|
245 |
-
)
|
246 |
-
(2): ResidualAttentionBlock(
|
247 |
-
(attn): MultiheadAttention(
|
248 |
-
(out_proj): NonDynamicallyQuantizableLinear(in_features=512, out_features=512, bias=True)
|
249 |
-
)
|
250 |
-
(ln_1): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
|
251 |
-
(mlp): Sequential(
|
252 |
-
(c_fc): Linear(in_features=512, out_features=2048, bias=True)
|
253 |
-
(gelu): QuickGELU()
|
254 |
-
(c_proj): Linear(in_features=2048, out_features=512, bias=True)
|
255 |
-
)
|
256 |
-
(ln_2): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
|
257 |
-
)
|
258 |
-
(3): ResidualAttentionBlock(
|
259 |
-
(attn): MultiheadAttention(
|
260 |
-
(out_proj): NonDynamicallyQuantizableLinear(in_features=512, out_features=512, bias=True)
|
261 |
-
)
|
262 |
-
(ln_1): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
|
263 |
-
(mlp): Sequential(
|
264 |
-
(c_fc): Linear(in_features=512, out_features=2048, bias=True)
|
265 |
-
(gelu): QuickGELU()
|
266 |
-
(c_proj): Linear(in_features=2048, out_features=512, bias=True)
|
267 |
-
)
|
268 |
-
(ln_2): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
|
269 |
-
)
|
270 |
-
(4): ResidualAttentionBlock(
|
271 |
-
(attn): MultiheadAttention(
|
272 |
-
(out_proj): NonDynamicallyQuantizableLinear(in_features=512, out_features=512, bias=True)
|
273 |
-
)
|
274 |
-
(ln_1): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
|
275 |
-
(mlp): Sequential(
|
276 |
-
(c_fc): Linear(in_features=512, out_features=2048, bias=True)
|
277 |
-
(gelu): QuickGELU()
|
278 |
-
(c_proj): Linear(in_features=2048, out_features=512, bias=True)
|
279 |
-
)
|
280 |
-
(ln_2): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
|
281 |
-
)
|
282 |
-
(5): ResidualAttentionBlock(
|
283 |
-
(attn): MultiheadAttention(
|
284 |
-
(out_proj): NonDynamicallyQuantizableLinear(in_features=512, out_features=512, bias=True)
|
285 |
-
)
|
286 |
-
(ln_1): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
|
287 |
-
(mlp): Sequential(
|
288 |
-
(c_fc): Linear(in_features=512, out_features=2048, bias=True)
|
289 |
-
(gelu): QuickGELU()
|
290 |
-
(c_proj): Linear(in_features=2048, out_features=512, bias=True)
|
291 |
-
)
|
292 |
-
(ln_2): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
|
293 |
-
)
|
294 |
-
(6): ResidualAttentionBlock(
|
295 |
-
(attn): MultiheadAttention(
|
296 |
-
(out_proj): NonDynamicallyQuantizableLinear(in_features=512, out_features=512, bias=True)
|
297 |
-
)
|
298 |
-
(ln_1): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
|
299 |
-
(mlp): Sequential(
|
300 |
-
(c_fc): Linear(in_features=512, out_features=2048, bias=True)
|
301 |
-
(gelu): QuickGELU()
|
302 |
-
(c_proj): Linear(in_features=2048, out_features=512, bias=True)
|
303 |
-
)
|
304 |
-
(ln_2): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
|
305 |
-
)
|
306 |
-
(7): ResidualAttentionBlock(
|
307 |
-
(attn): MultiheadAttention(
|
308 |
-
(out_proj): NonDynamicallyQuantizableLinear(in_features=512, out_features=512, bias=True)
|
309 |
-
)
|
310 |
-
(ln_1): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
|
311 |
-
(mlp): Sequential(
|
312 |
-
(c_fc): Linear(in_features=512, out_features=2048, bias=True)
|
313 |
-
(gelu): QuickGELU()
|
314 |
-
(c_proj): Linear(in_features=2048, out_features=512, bias=True)
|
315 |
-
)
|
316 |
-
(ln_2): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
|
317 |
-
)
|
318 |
-
(8): ResidualAttentionBlock(
|
319 |
-
(attn): MultiheadAttention(
|
320 |
-
(out_proj): NonDynamicallyQuantizableLinear(in_features=512, out_features=512, bias=True)
|
321 |
-
)
|
322 |
-
(ln_1): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
|
323 |
-
(mlp): Sequential(
|
324 |
-
(c_fc): Linear(in_features=512, out_features=2048, bias=True)
|
325 |
-
(gelu): QuickGELU()
|
326 |
-
(c_proj): Linear(in_features=2048, out_features=512, bias=True)
|
327 |
-
)
|
328 |
-
(ln_2): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
|
329 |
-
)
|
330 |
-
(9): ResidualAttentionBlock(
|
331 |
-
(attn): MultiheadAttention(
|
332 |
-
(out_proj): NonDynamicallyQuantizableLinear(in_features=512, out_features=512, bias=True)
|
333 |
-
)
|
334 |
-
(ln_1): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
|
335 |
-
(mlp): Sequential(
|
336 |
-
(c_fc): Linear(in_features=512, out_features=2048, bias=True)
|
337 |
-
(gelu): QuickGELU()
|
338 |
-
(c_proj): Linear(in_features=2048, out_features=512, bias=True)
|
339 |
-
)
|
340 |
-
(ln_2): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
|
341 |
-
)
|
342 |
-
(10): ResidualAttentionBlock(
|
343 |
-
(attn): MultiheadAttention(
|
344 |
-
(out_proj): NonDynamicallyQuantizableLinear(in_features=512, out_features=512, bias=True)
|
345 |
-
)
|
346 |
-
(ln_1): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
|
347 |
-
(mlp): Sequential(
|
348 |
-
(c_fc): Linear(in_features=512, out_features=2048, bias=True)
|
349 |
-
(gelu): QuickGELU()
|
350 |
-
(c_proj): Linear(in_features=2048, out_features=512, bias=True)
|
351 |
-
)
|
352 |
-
(ln_2): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
|
353 |
-
)
|
354 |
-
(11): ResidualAttentionBlock(
|
355 |
-
(attn): MultiheadAttention(
|
356 |
-
(out_proj): NonDynamicallyQuantizableLinear(in_features=512, out_features=512, bias=True)
|
357 |
-
)
|
358 |
-
(ln_1): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
|
359 |
-
(mlp): Sequential(
|
360 |
-
(c_fc): Linear(in_features=512, out_features=2048, bias=True)
|
361 |
-
(gelu): QuickGELU()
|
362 |
-
(c_proj): Linear(in_features=2048, out_features=512, bias=True)
|
363 |
-
)
|
364 |
-
(ln_2): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
|
365 |
-
)
|
366 |
-
)
|
367 |
-
)
|
368 |
(token_embedding): Embedding(49408, 512)
|
369 |
(ln_final): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
|
370 |
)
|
|
|
1 |
---
|
2 |
pipeline_tag: sentence-similarity
|
3 |
+
license: apache-2.0
|
4 |
tags:
|
5 |
- sentence-transformers
|
6 |
- feature-extraction
|
7 |
- sentence-similarity
|
8 |
- transformers
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
---
|
10 |
|
11 |
# sentence-transformers/clip-ViT-B-32
|
12 |
|
13 |
+
This the [OpenAI CLIP Model](https://github.com/openai/CLIP) ported to [sentence-transformers](https://www.SBERT.net) model: It maps images and text to a shared vector space.
|
14 |
|
15 |
|
16 |
|
|
|
48 |
SentenceTransformer(
|
49 |
(0): CLIPModel(
|
50 |
(model): CLIP(
|
51 |
+
(visual): VisualTransformer()
|
52 |
+
(transformer): Transformer()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
(token_embedding): Embedding(49408, 512)
|
54 |
(ln_final): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
|
55 |
)
|