File size: 2,621 Bytes
45d8c45 cbb23c7 45d8c45 4e40d29 45d8c45 cbb23c7 45d8c45 0fd24a5 ef366e9 25d73ca 7e026e4 ef366e9 0fd24a5 ef366e9 0fd24a5 ef366e9 0fd24a5 ef366e9 0fd24a5 ef366e9 0fd24a5 ef366e9 0fd24a5 ef366e9 0fd24a5 ef366e9 0fd24a5 ef366e9 12c993a ef366e9 0fd24a5 ef366e9 0fd24a5 ef366e9 0fd24a5 ef366e9 0fd24a5 ef366e9 0fd24a5 ef366e9 0fd24a5 ef366e9 0fd24a5 280cc2c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
---
language:
- en
- ko
license: apache-2.0
library_name: transformers
tags:
- translation
- t5
- en-to-ko
datasets:
- aihub-koen-translation-integrated-base-10m
metrics:
- bleu
model-index:
- name: traintogpb-ke-t5-base-aihub-koen-translation-integrated-10m-en-to-ko
results:
- task:
name: Translation
type: translation
dataset:
name: AIHub KO-EN Translation Integrated Base (10M)
type: aihub-koen-translation-integrated-base-10m
metrics:
- name: BLEU
type: bleu
value: 18.838066
epoch: 2
- name: BLEU
type: bleu
value: 18.006119
epoch: 1
---
# Model Description
This model, named **traintogpb-ke-t5-base-aihub-koen-translation-integrated-10m-en-to-ko**, is a machine translation model that translates English to Korean. It is fine-tuned from the [KETI-AIR/ke-t5-base](https://huggingface.co/KETI-AIR/ke-t5-base) model using the [aihub-koen-translation-integrated-base-10m](https://huggingface.co/datasets/traintogpb/aihub-koen-translation-integrated-base-10m) dataset.
## Model Architecture
The model uses the ke-t5-base architecture, which is based on the T5 (Text-to-Text Transfer Transformer) model.
## Training Data
The model was trained on the aihub-koen-translation-integrated-base-10m dataset, which is designed for English-to-Korean translation tasks.
## Training Procedure
### Training Parameters
The model was trained with the following parameters:
- Learning Rate: 0.0005
- Weight Decay: 0.01
- Batch Size: 64 (training), 128 (evaluation)
- Number of Epochs: 2
- Save Steps: 500
- Max Save Checkpoints: 2
- Evaluation Strategy: At the end of each epoch
- Logging Strategy: No logging
- Use of FP16: No
- Gradient Accumulation Steps: 2
- Reporting: None
### Hardware
The training was performed on a single GPU system with an NVIDIA A100 (40GB).
## Performance
The model achieved the following BLEU scores during training:
- Epoch 1: 18.006119
- Epoch 2: 18.838066
## Usage
This model is suitable for applications involving translation from English to Korean. Here is an example on how to use this model in Hugging Face's Transformers:
```python
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
model = AutoModelForSeq2SeqLM.from_pretrained("traintogpb-ke-t5-base-aihub-koen-translation-integrated-10m-en-to-ko")
tokenizer = AutoTokenizer.from_pretrained("traintogpb-ke-t5-base-aihub-koen-translation-integrated-10m-en-to-ko")
inputs = tokenizer.encode("This is a sample text.", return_tensors="pt")
outputs = model.generate(inputs)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|