---
library_name: peft
license: llama2
base_model: lmsys/vicuna-13b-v1.5
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 2add043c-9088-4917-9cf1-b28940acc57a
results: []
---
[](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: lmsys/vicuna-13b-v1.5
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- aea63533c629081b_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/aea63533c629081b_train_data.json
type:
field_input: harmlessness
field_instruction: prompt_type
field_output: prompt_text
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
device: cuda
early_stopping_patience: 1
eval_max_new_tokens: 128
eval_steps: 5
eval_table_size: null
evals_per_epoch: null
flash_attention: false
fp16: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: sergioalves/2add043c-9088-4917-9cf1-b28940acc57a
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 3
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory:
0: 75GiB
max_steps: 30
micro_batch_size: 2
mlflow_experiment_name: /tmp/aea63533c629081b_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_hf
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 10
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: true
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: e7393116-9a17-4197-94a8-628a8551892d
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: e7393116-9a17-4197-94a8-628a8551892d
warmup_steps: 10
weight_decay: 0.01
xformers_attention: true
```
# 2add043c-9088-4917-9cf1-b28940acc57a
This model is a fine-tuned version of [lmsys/vicuna-13b-v1.5](https://huggingface.co/lmsys/vicuna-13b-v1.5) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.6111
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_HF with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 30
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0002 | 1 | 4.2675 |
| 3.8929 | 0.0008 | 5 | 4.1604 |
| 3.4398 | 0.0016 | 10 | 3.4371 |
| 2.7556 | 0.0025 | 15 | 2.8416 |
| 2.6629 | 0.0033 | 20 | 2.6675 |
| 2.4096 | 0.0041 | 25 | 2.6312 |
| 2.9997 | 0.0049 | 30 | 2.6111 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1