--- license: mit --- LoRA weights only and trained for research - nothing from the foundation model. Trained using Anthropics HH dataset which can be found here https://huggingface.co/datasets/Anthropic/hh-rlhf Sample usage ``` import torch import os import transformers from peft import PeftModel from transformers import LlamaTokenizer, LlamaForCausalLM model_path = "decapoda-research/llama-13b-hf" peft_path = 'serpdotai/llama-hh-lora-13B' tokenizer_path = 'decapoda-research/llama-13b-hf' model = LlamaForCausalLM.from_pretrained(model_path, load_in_8bit=True, device_map="auto") # or something like {"": 0} model = PeftModel.from_pretrained(model, peft_path, torch_dtype=torch.float16, device_map="auto") # or something like {"": 0} tokenizer = LlamaTokenizer.from_pretrained(tokenizer_path) batch = tokenizer("\n\nUser: Are you sentient?\n\nAssistant:", return_tensors="pt") with torch.no_grad(): out = model.generate( input_ids=batch["input_ids"].cuda(), attention_mask=batch["attention_mask"].cuda(), max_length=100, do_sample=True, top_k=50, top_p=1.0, temperature=1.0, use_cache=False ) print(tokenizer.decode(out[0])) ``` The model will continue the conversation between the user and itself. If you want to use as a chatbot you can alter the generate method to include stop sequences for 'User:' and 'Assistant:' or strip off anything past the assistant's original response before returning. Trained for 2 epochs with a sequence length of 640, mini-batch size of 3, gradient accumulation of 5, on 8 A6000s for an effective batch size of 120. Training settings: - lr: 2.0e-04 - lr_scheduler_type: linear - warmup_ratio: 0.06 - weight_decay: 0.1 - optimizer: adamw_torch_fused LoRA config: - target_modules: ['q_proj', 'k_proj', 'v_proj', 'o_proj'] - r: 64 - lora_alpha: 32 - lora_dropout: 0.05 - bias: "none" - task_type: "CAUSAL_LM"